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Topological quadratic-node semimetal in a
photonic microring lattice

Zihe Gao 1 , Haoqi Zhao 2, Tianwei Wu 1, Xilin Feng2, Zhifeng Zhang1,2,
Xingdu Qiao2, Ching-Kai Chiu 3 & Liang Feng 1,2

Graphene, with its two linearly dispersingDirac points with opposite windings,
is theminimal topological nodal configuration in the hexagonal Brillouin zone.
Topological semimetals with higher-order nodes beyond theDirac points have
recently attracted considerable interest due to their rich chiral physics and
their potential for the design of next-generation integrated devices. Here we
report the experimental realization of the topological semimetal with quad-
ratic nodes in a photonic microring lattice. Our structure hosts a robust
second-order node at the center of the Brillouin zone and two Dirac points at
the Brillouin zone boundary—the second minimal configuration, next to gra-
phene, that satisfies the Nielsen–Ninomiya theorem. The symmetry-protected
quadratic nodal point, together with the Dirac points, leads to the coexistence
of massive andmassless components in a hybrid chiral particle. This gives rise
to unique transport properties, which we demonstrate by directly imaging
simultaneous Klein and anti-Klein tunnelling in the microring lattice.

Topological nodal semimetals1–4, with graphene as the most iconic
example5, possess band touching points protected by symmetries and
are characterized by a non-zero quantized topological number6.
Remarkably, the discovery of graphene5 ushered in the era of topolo-
gical nodal semimetals with significant advancements in both funda-
mental physics and technological innovations. The two Dirac cones in
graphene manifest a playground with abundant phenomena ranging
from topological physics7, chiral quantum transport8, valleytronics9,10,
to moiré bands11 and unconventional superconductivity12 in twisted
bilayers, just to name a few. Two-dimensional (2D) topological nodal
semimetals beyond graphene, particularly the ones with quadratic
nodal points beyond linearDirac points, have been of great interest for
their rich quantum-electrodynamics-like chiral physics8,13–16 or anom-
alous orbital transport17. These quantum transport properties are
fundamentally different from those in graphene, as a direct result of
the difference in topological node configuration, and are potentially
foundations for next-generation electronic and photonic devices. For
example, massive chiral particles hosted by the quadratic nodal point
have been a promising platform for the realization of 2D field effect
transistors (FETs), impossible in graphene due to the linear Dirac

dispersion and the Klein tunneling8. Theorists have proposed potential
realizations of quadratic point contacts in 2D and three-dimensional
(3D) semimetals17–19. However, although quadratic nodes can emerge
in a bilayer graphene platform with fine-tuning16,20, quadratic nodes
with topological protection have remained largely elusive in
condensed-matter materials despite myriad efforts due to the lack of
spatial inversion symmetry in gated bilayer graphene21,22 and the lack
of isolated orbital bands in orbitronics17. Photonic and acoustic
metamaterials, on the other hand, have provided versatile platforms
where quadratic band touching points have been demonstrated in 2D
photonic crystals and topologically protected high-order band
touching points have been demonstrated in 3D Weyl system23–26.

Here we report the experimental realization of the topological
quadratic-node semimetal, with coexisting symmetry-protected
quadratic and Dirac nodes, distinct from any previously reported
nodal systems. The coexistence of quadratic and Dirac nodes, rooted
in the cross-spin coupling and the commutation relations between
symmetry operators, manifests profoundly the unique chiral trans-
port. The quadratic-node semimetal is constructed on a triangular
lattice with winding cross-spin coupling between nearest-
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neighbouring sites, experimentally realized in a photonic lattice with
degenerate clockwise (CW) and counter-clockwise (CCW) modes
constituting the pseudospin space (Fig. 1). The cross-spin coupling is a
result of momentum conservation during the coupling process
between adjacent rings (depicted in Fig. 1b and quantitatively analyzed
in Supplementary Information Section 10). Similar to graphene, the
quadratic-node semimetal is also described by a two-band tight-bind-
ing model, and it obeys the Nielsen–Ninomiya theorem27–29. For gra-
phene, with winding number ±1 at the two inequivalent cones
respectively, it possesses the minimal topological node configuration
in the hexagonal Brillouin zone and naturally obeys the
Nielsen–Ninomiya theorem,which forces the total topological number
in the Brillouin zone to be neutral27–29. The quadratic-node semimetal
we report here is the second minimal configuration according to the
generalizedNielsen–Ninomiya theorem30, with awindingnumberof +2
at Γ and two Dirac nodes at K and K′ with a winding number of −1,
illustrated in Fig. 1c. With an extra valley at the center of the Brillouin
zone, the quadratic-node semimetal exhibits an extra dimension in its
valley degree of freedom beyond graphene, and the transport in this
extra valley can bemodulated independently to the Dirac valleys. With
edge excitation, a hybrid chiral particle can be excited, which simul-
taneously exhibits massive and massless behaviors, opening possibi-
lities for exotic dynamics. This unique nodal configuration, with
coexisting quadratic and Dirac nodes around the same energy level, is
distinct from other topological photonic or acoustic metamaterials
and presents a versatile three-valley system. The quadratic-node
semimetal inherits graphene physics, with massless Dirac particle and

Klein tunneling supported by its linear nodal points, but at the same
time features a new dimensionality represented by its quadratic node.
It can enable a distinguished, promising platform to study topological
phases and bilayer coupling beyond graphene by exploring various
ways in gapping and coupling between cones and benefiting from the
vast possibilities offered by the extra quadratic cone. From the tech-
nological perspective, the robust quadratic node and its associated
massive chiral particle also open new possibilities for building photo-
nic FETs using anti-Klein tunneling8,31.

Results
2D quadratic-node semimetal and its topological node
configuration
The quadratic-node semimetal, using the weakly-coupled photonic
microring lattice with whispering gallery mode (WGM) order 34 as an
example, can be described by a 2 × 2 tight-binding model30 (see Sup-
plementary Information Section 1)

Ĥ = �
X
~x,~y

n
Ĉ
y
~x + 1,~yσxĈ~x,~y + Ĉ

y
~x�α,~y+ γ

�
ασx + γσy

�
Ĉ~x,~y

+ Ĉ
y
~x +α,~y+ γ

�
ασx � γσy

�
Ĉ~x,~y

o
+ h:c: ,

ð1Þ

where lattice constant ≡ 1, α = cos2π/3, γ = sin2π/3, and Ĉ~x,~y =
ĉ↺~x,~y

ĉ↻~x,~y

� �
is

the annihilation operator with CCW and CW modes (i.e., the two
pseudospins) at lattice site ð~x,~yÞ. The coupling strength (i.e., hopping
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Fig. 1 | The quadratic-node semimetal realized in a photonic microring lattice.
a Scanning electron microscopy (SEM) image of the microring array in a triangular
lattice fabricated on a silicon-on-insulator (SOI) substrate. b Cross-spin coupling
geometry between the nearest neighbors. The off-diagonal elements in the cou-
plingmatrix represent cross-spin coupling, illustratedby the red and yellow arrows.
The coupling matrices in the 6 different coupling directions are related by the
rotation operator C6 (see Supplementary Information Section 1). c Nodal points in
the Brillouin zone of the quadratic-node semimetal and the graphene. Γ, K, and K′

mark the high-symmetry points in the Brillouin zone. The + (−) sign on C6 operator
denotes whether it commutes (or anticommutes) with the chiral symmetry

operator and hence resulting in nodal points with the same (opposite) windings.
The positive (negative) winding numbers, ν, carried by nodal points, are illustrated
by the black (red) winding arrows. At Γ point in the quadratic-node semimetal, the
arrow winds twice to illustrate the charge-2 winding carried by the quadratic node.
Theblue andorange lines illustrate the energy dispersion at the nodal points, which
is parabolic when |ν| = 2 and linear when |ν| = 1. The blue branch is with pseudospin
(1,-1)T while the orange branch is with pseudospin (1,1)T. d The energy dispersion of
the quadratic-node semimetal, with an example Fermi energy, EF, of 0.5 in the unit
of normalized coupling strength. The red (blue) color denotes the negative (posi-
tive) energy branch.
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integral) is set to unity. The key ingredient in this Hamiltonian is the
cross-spin coupling between nearest neighbors, represented by the
coupling matrix consisting of superpositions of Pauli matrices

σx =
0 1
1 0

� �
and σy =

0 �i
i 0

� �
, naturally arising from the conserva-

tion of momentum in the coupling region between two adjacent
microrings (Fig. 1b). This coupling matrix has direction dependence
and respects C6 symmetry: κβ, the coupling matrix along direction β,
satisfies κC6ðβÞ � κβ+π=3 =C6ðκβÞ (see Supplementary Information Sec-

tion 1). Note that the cross-spin coupling geometry differentiates our
photonic lattice from previously studied topological photonic lattices
where the two pseudospins do not cross couple (and hence can be
treated simply as two time-reversed copies of the same system)32,33. The
phase in the off-diagonal terms of the coupling matrix is dependent on
the phase profile of the resonant mode along the ring perimeter and
hence the WGM mode order (see Supplementary Information
Section 1). For mode order 34, the coupling respects C6 symmetry

with the rotation operator defined as C6 =
ei2π=3 0
0 e�i2π=3

� �
. In the

momentum space, the Hamiltonian is rewritten as

H kð Þ= 0 h kð Þ
h* kð Þ 0

 !
, ð2Þ

where h kð Þ=2½coskx + cosðαkx + γkyÞ+ cosð�αkx + γkyÞ�. Due to the
geometry of the lattice, the Hamiltonian naturally preserves inversion
symmetry (H(-k) = H(k)). In addition, because the two pseudospins
(CCW and CW modes) are time-reversal partners, time-reversal
symmetry is preserved (σxH

* �kð Þσx =HðkÞ), where σx exchanges the
pseudospins. Hence, space-time inversion symmetry is preserved
(σxH

* kð Þσx =HðkÞ) so that σz is forbidden and the nodal points are
therefore symmetry-protected. In this two-bandmodel, this symmetry
is equivalent to chiral symmetry (σzH kð Þσz = � HðkÞ), regardless of σ0
term. Due to chiral symmetry, the off-diagonal term h(k) can be used
to compute the winding number ν = i

2π

H
∇kðln det h kð Þ� �Þ � dk, where

the integral path encloses the node34. The non-zero winding number
characterizes non-trivial nodal points: ν = ±1 corresponds to a Dirac
node, and ν = ±2 is associated with a quadratic node.

As chiral symmetry (with the symmetry operator S = σz) quantizes
the winding numbers of the nodes, the commutation relations between
S and other symmetry operators differentiate the topological nodes
between the quadratic-node semimetal and the graphene, illustrated in
Fig. 1c. In both systems, the Dirac cones at K, K′ are connected by C6

rotation symmetry (or mirror symmetry, time-reversal symmetry). We
use this rotation symmetry operator as an example to discuss the
winding numbers of the nodes. Since for graphene, the C6 rotation
operator, which exchanges the sublattice bases, anticommuteswith the
chiral (sublattice) operator, the winding numbers at these two points
are opposite v(K) = −ν(K′). In contrast, because the pseudospin in the
quadratic-node semimetal is not spatial dependent, the rotation
operator naturally commutes with the chiral operator; hence, the
nodes at K, K′ have the same winding numbers. According to the
Nielsen–Ninomiya theorem27–30, the charge neutralization must lead to
the presence of at least a nodal point with winding number 2 in the
same Brillouin zone. Since the C6 rotation symmetry can duplicate the
nodal point away from the rotation centers, the presence of a quadratic
node at Γ, the only C6 rotation center, forms theminimal configuration.

The band structure calculated from the tight-bindingHamiltonian
is plotted in Fig. 1dwith an example Fermi level set to 0.5 (in unit of the
normalized coupling strength). It is expected from the band filling that
the quantum transport properties, determined by the low energy
physics, can carry richer dynamics than graphene due to the coex-
istence of quadratic and Dirac nodal points. Before the study of
transport, we first provide a direct characterization of the topological

charges of the two different types of nodal points. Near the Dirac
nodes, the quasiparticles obey effective Hamiltonian

HK,K0 = ±
3
ffiffiffi
3

p

2

0 Δkx + iΔky

Δkx � iΔky 0

 !

= ±
3
ffiffiffi
3

p

2
0 keiθ

ke�iθ 0

 !
= ± _vFσ �Δk

ð3Þ

where Δk= ðΔkx ,ΔkyÞ is the momentum deviation from the high sym-
metry point (K and K′), θ= tan�1ðΔky

Δkx
Þ, σ = ðσx ,σyÞ, and the ± sign cor-

responds to K and K′ points, respectively. This 2D Dirac-like equation
leads to the well-known massless chiral particle with its spin and
momentum locked to parallel or antiparallel direction. Notably,
although the two cones in K and K′ are flipped from the ± sign, the
windings in K and K′ are the same, distinguished from the case in
graphene. Near the quadratic node, the effective Hamiltonian is

HΓ =
3
4

0 ky + ikx

	 
2
ky � ikx

	 
2
0

0
B@

1
CA= � 3

4
0 k2e�2iθ

k2e2iθ 0

 !
ð4Þ

suggesting a chiral particle with finite mass as a consequence of the
quadratic dispersion. However, it is important to note that this chiral
particle is intrinsically different from massive spinless particles descri-
bed by the Schrödinger equation. For this massive chiral particle, its
spin is again locked to itsmomentumdirection (for each spin, there are
two allowedmomentumdirections instead of one in themassless case),
and its transport properties in a homogeneous material or a hetero-
geneous junction are dominated by its chirality, which is another
manifestation of the Klein “paradox” in condensed-matter systems8,
often coined anti-Klein tunneling15,16,35. Here we first focus on a
homogeneous semimetal and characterize its winding numbers around
the Dirac and quadratic nodal points, shown in Fig. 2. The topological
charges carried by the nodal points can be observed from the winding
of ϕ, the relative phase between two pseudospin components in the
eigenmodes, equivalent to thewinding of (pseudo) spin direction along
x-y plane on the Bloch sphere. We plot the phase ϕ for the top (E > 0)
branches in Fig. 2a and b for mode order 34 and 35, respectively. For
mode order 34, the Hamiltonian, as discussed above, is constructed

from the coupling matrix κ0 = σx ,C6 =
ei2π=3 0
0 e�i2π=3

� �
. For mode

order 35, the coupling phase is different from mode order 34 due to
the difference in the phase profile along the perimeter of a microring

resonator, it has κ0 = � σx and C6 =
eiπ=3 0
0 e�iπ=3

� �
. These two mode

orders thus exhibit opposite phase windings, evidently shown in Fig. 2a
and b. To interact with resonant modes in the photonic lattice and
perform excitation or imaging from free space, we engrave angular
gratings on the inner sidewalls of the rings to couple the optical modes
confined in the photonic semimetal to propagating modes in the free
space through a collective scattering process (Fig. 2c). The angular
gratings scatter CW (CCW) WGMs into right- (left-) handed circularly
polarized light, respectively36. This maps the pseudospin Hilbert
space in the lattice to polarization Hilbert space in the free space:
pseudospin |+〉 = (1,1)T is mapped to vertical polarization, while
pseudospin |−〉 = (1, −1)T is mapped to horizontal polarization (see
Supplementary Information Section 6). This mapping can be freely
controlled by the angular locations of the scatters, which is an
advantage of our system. When the number of scatters per resonator
(i.e., grating order) does not equal themode order, the scatters will not
affect the effective Hamiltonian of the lattice. The polarization rotation
around a quadratic and a Dirac nodal point is calculated and plotted in
Fig. 2d and e, showing winding of two cycles and one cycle,
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respectively, in the polarization Hilbert space. Experimentally, this
winding is observed with cross-polarization reflection measurement in
the Fourier plane. We excite the sample with linearly polarized
monochromatic light, and as a result of cross-polarization filtering,
dark lines appear in the Fourier domain where the lattice Bloch modes
have polarization either identical or orthogonal to the incident
polarization (Fig. 2f–i). For the quadratic band touching, two dark
lines appear, and they rotate by the same angle as the rotation of
polarizer and analyzer (Fig. 2f and g and Supplementary Movie 1). For
the Dirac points, we observe a single dark line, which rotates by twice
the angle as the rotation of polarizer and analyzer (Fig. 2h and i and
Supplementary Movie 2), and the rotation direction is the same for
both K and K′. The number of dark lines and the rotation of pseudospin
provide a directmeasurement of quantizedwinding numbers of 2 and 1
for the quadratic and Dirac nodal points. Continuous wavelength
sweeping (Supplementary Movie 3) also confirms the touching of the
top and bottom bands (within the energy resolution limited by the
quality factor of individual resonators). With these results, we report

the experimental realization of the topological quadratic-node semi-
metal, which is a 2D system that possesses a topologically protected
quadratic node and obeys the Nielsen–Ninomiya theorem.

Quantum transport in the quadratic-node semimetal
Near the band touching energy, the quadratic-node semimetal sup-
ports both massive and massless chiral particles in three inequivalent
valleys in the momentum space, leading to unique quantum transport
properties. To study the exotic chiral transport in our quadratic-node
semimetal, we first place coherent excitation on the edge of a homo-
geneous nanoribbon and terminate the nanoribbon with an absorber
section (Fig. 3a and Methods). With an in-phase excitation from the
waveguides on the edge, we excite the (1,1)T pseudospin (orange-
colored in Fig. 3) with ky ≅ 0 (see Supplementary Information Sec-
tion 4). Theband structure along ky=0 inmodeorder 34 and 35 are the
same, but the pseudospin is flipped (shown in Fig. 3b), because the
nearest-neighbor coupling in the horizontal direction, κ0, has opposite
signs for mode orders 34 (κ0 = σx) and mode order 35 (κ0 = −σx) (see
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Fig. 2 | Characterization of the topological charges around the band touching
points in the quadratic-node semimetal. a, b Winding of the wavefunction
(pseudo) spin direction,ϕ ≡ arg(ψ↻/ψ↺), for the positive energy (E >0) branches of
WGM order 34 and 35, respectively, in the Fourier space marked by wavevectors
kx,y. The pseudospin is noted as ðψ↺,ψ↻ÞT , where ψ↺ (ψ↻) is the wavefunction
component in the CCW (CW) WGM mode. The first Brillouin zone is marked by
dashed white lines. The charge-1 and charge-2 windings of ϕ at the high-symmetry
points are marked by white winding arrows. c Correspondence between the Bloch
sphere representing the pseudospin states in the microrings and the Bloch sphere
representing polarization states of the light in free space. |↻〉 and |↺〉 denote the
CW and CCWWGMmode, whichwe choose as pole states of the pseudospin Bloch
sphere. |+〉 = (1,1)T and |−〉 = (1, −1)T denote the pseudospins in the ±x directions. |R〉, |
L〉, |V〉, |H〉 are the right-handed, left-handed, vertical, and horizontal polarizations.
This correspondence originates from the spin-direction locking in the scattering
process, illustrated in themiddle, where the CW (CCW) travelingwave scatters only
the right (left) handed circularly polarized light (represented by rotating red
arrows). d, e Polarization of the scattered light, plotted near the quadratic band

touching point (ofmodeorder 34, red dotted box in a) and theDirac band touching
point (of mode order 35, yellow dotted box in b), respectively (E > 0 branches). ν is
the winding number. The polarization rotates two full cycles near the quadratic
band touching and one full cycle near the Dirac band touching. Insets illustrate the
cones, where orange and blue denote the vertical and horizontal polarizations
(marked by V and H, corresponding to (1,1)T and (1,-1)T pseudospins in the
microrings). f–i Experimental Fourier plane images of the cross-polarization
reflection off a quadratic-node semimetal with an incident wavelength slightly
above the band-touching energy of mode order 34 (f and g) and mode order 35
(h and i). Orientations of the polarizer (Pol.) and analyzer (Ana.) used for cross-
polarization filtering are labeled on top of the images. The Brillouin zones are
outlined with white lines. Images with continuous rotations of the polarizer and
analyzer are recorded in SupplementaryMovies 1 and 2, where continuous winding
of thewavefunction is observed. Themeasurement setup and a detailed account of
the noise (stray light) due to imperfect cross-polarization filtering, for example,
near theDirac cones and inBrillouin zones away from the centerone, is discussed in
Supplementary Information Section 7.
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Supplementary Information Section 1). For mode order 35, above the
quadratic-node band touching energy, the (1,1)T pseudospin excites
only theDirac valley at Kwith no excitation of the K′ or Γ valleys, shown
in Fig. 3c and e, because in K′ and Γ valleys the right-propagatingmode
has the orthogonal pseudospin (1,-1)T. This valley selectivity from
pseudospin conservation is a direct consequence of chirality and spin-
momentum locking in both Dirac and quadratic valleys. The spin-
momentum locking in our systems is in direct analogy to the spin-
momentum locking well known, for example, in topological insulators
with the Rashba term:37 the particle’s spin determines the direction of
its momentum. Here, a valley can be excited only when the spin-
momentum locking is satisfied in this valley. For mode order 34, with
similar valley selectivity, we observed excitation of both the Dirac
valley and the quadratic valley above the quadratic band touching
energy (Fig. 3d and f). In other words, each photon, injected through
the spatially localized edge excitation, occupies both the Dirac and
the quadratic valleys and becomes a hybrid superposition of both
massive and massless chiral particles. This counterintuitive behavior
can be explored to show exotic transport properties. As an example,
we demonstrate the simultaneous Klein and anti-Klein tunneling as a
signature of this hybrid chiral particle.

When a hybrid chiral particle occupies both the quadratic valley
and the Dirac valley, the two valley components behave in distinct
manners when we apply potential modulation to form a p-n junction
(Fig. 4a). Here, themicrorings in the n-region have a nominal width of
400nm, while the ones in the p-region have a width of 395 nm. The
difference in resonant energies due to the width difference creates a

potential step of about 350GHz (about twice the coupling strength).
The hybrid chiral particle in this p-n junction nanoribbon simulta-
neously reveals two signature behaviors of chiral tunneling, the Klein
and anti-Klein tunneling, because of the delicately designed coex-
istence of both Dirac and quadratic valleys. The transport of a
massless chiral particle in a Dirac valley at normal incidence on a
potential step follows the Klein tunneling mechanism (Fig. 4b)8,38,
originally used to describe the tunneling of relativistic electrons in
the Klein “paradox”39. The spin-momentum locking in a massless
chiral particle forbids the reflection process that violates spin con-
servation, hence forcing the transmission coefficient to be unity
when intervalley scattering is negligible. On the contrary, for the
massive chiral particle in a quadratic valley, because for each spin
there are two allowed momentum directions, reflection is allowed at
normal incidence. When the Fermi energy is lower than the potential
barrier, the p-n junction spectrally aligns the massive “electrons” in
the n-region to the “holes” in the p-region, and because the “elec-
trons” and “holes” have orthogonal spins, transmission is forbidden
by spin conservation. This complete reflection at normal incidence,
or known as anti-Klein tunneling, is a complementary example to
Klein tunneling and a promising candidate for implementing FETs in
2D semimetals8. Previously the anti-Klein tunning has only been
observed indirectly in bilayer graphene with conductance
measurements15,16,31 without direct information on the wavefunction
or the reflection process. Here we provide not only direct observa-
tion of the anti-Klein tunneling in the Fourier plane, thanks to the
topologically protected quadratic cone, but also we show that a
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a Schematic illustration of the excitation, the homogeneous section (red) and the
absorber section (black) in the nanoribbon. The excitation is set to (1,1)T pseu-
dospin (Methods). The absorber section has excessive scattering loss that gradually
increases from left to right to eliminate any reflection off the sample boundary.
b The pseudospin composition of all the band touching points (along cut planes of
constant ky). The coupling matrix along x-direction, κ0� , has opposite signs for
mode order 34 and 35, resulting in the difference in pseudospin composition.
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1 0
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is the Pauli matrix. c, d Experimental measurements (Exp.) and finite-

element-method (FEM) simulations (Sim.) of the transporting wave excited by the
coherent excitation on the edge formode order 35 and 34, respectively, in the Fourier
(reciprocal) space. c, d share the same normalized intensity colorbar. In the experi-
mental images for mode order 35, the signals are stronger in the lower half of the

Brillouin zone due to the emission profile of the individual rings. This is discussed in
detail in Supplementary Information Section 6. e, f FEM simulation of the energy
dispersion (orange and blue lines, left y-axis) and experimentally measured momen-
tum values (green stars) at various wavelengths (right y-axis). The solid (hollow) green
stars show locations of the highest (second highest) peaks in the Fourier-space image
along ky=0. The black lines indicate the energy levels for the images shown in c andd.
Experimentally for mode order 34 around 1519.5 nm we observe chiral particles that
are simultaneouslymassive andmassless, occupying bothDirac and quadratic valleys.
Fourier plane images and the protocol in plotting the experimental data points (green
stars) and FEM simulations are shown in Supplementary Information Section 8 and
Supplementary Movies 6 and 7. The energy offset between the quadratic and the
Dirac band touching points is a result of the strong coupling between the microrings
(see Supplementary Information Section 5). This reduces the energy range within
which we can inject both massive and massless components, as compared to the
tight-binding model calculations in Fig. 1 and Supplementary Figs. 3–10.
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hybrid chiral particle can exhibit both Klein and anti-Klein tunneling.
The simultaneous Klein and anti-Klein tunneling processes at Γ and K′

valleys are illustrated in Fig. 4b. Tight-binding model calculation
demonstrating unitary reflection (transmission) for each valley is
shown in Supplementary Information Section 2 and Supplementary
Movies 4 and 5 (rich dynamics involving simultaneous Klein and anti-
Klein tunneling can be observed in the time domain simulation in
Supplementary Movies 4 and 5). Nanoribbons are also theoretically
modeled, showing high reflection (transmission) albeit imperfect
collimation limited by the finite nanoribbon width (see Supplemen-
tary Information Section 3). Experimentally we observe both reflec-
tion and transmission at the p-n junction in the sample plane (Fig. 4c),
which is a combined effect from both the Klein and anti-Klein tun-
neling (Fig. 4f and Supplementary Movie 8). In the Fourier plane, we
can directly observe the momentum composition of the wavefunc-
tion in the n- and p-regions, respectively, with a spatial filter placed at
the image plane (Methods). In the n-region (Fig. 4d and g), for the
massive chiral component in the quadratic valley, both the incident
and reflected wave occur with opposite momenta, as a direct
observation of the anti-Klein tunneling. On the other hand, for the
massless chiral component in the Dirac valley, incident wave trans-
mits without any reflection, as predicted by Klein tunneling. In the
p-region (Fig. 4e and h), transmission appears in theDirac valley only,
with no transmission in the quadratic valley. The direct imaging of
simultaneous Klein and anti-Klein tunneling demonstrates the
unique transport property in the quadratic-node semimetal as a
result of coexisting massive and massless components in the chiral
particle. Massive chiral particle in 2D semimetals is a promising
approach to create logic gates. The simultaneous Klein and anti-Klein

tunneling in two separate valleys, on the other hand, provide two
channels that can be independently modulated.

Discussion
Here we report the discovery of a sibling of graphene, the topological
quadratic-node semimetal. The quadratic-node semimetal is described
by a two-band tight-binding model, much like the model of graphene,
except for the different nodal configurations (Supplementary Table 1),
which is governed by the Nielsen–Ninomiya theorem. The theorem
implies that the quadratic node is accompanied by two Dirac nodes.
The coexistence of quadratic and Dirac nodes, rooted in the cross-spin
coupling and the commutation relations between symmetry operators,
manifests profoundly the unique transport that we report here, as both
massive and massless chiral components are hosted and they support
distinct tunneling behaviors due to their difference in spin-momentum
locking. We show direct characterizations of the nodal topological
charges and more importantly, the quantum transport showing that a
chiral particle can be simultaneously massive and massless, exhibiting
both Klein and anti-Klein tunneling. The quadratic-node semimetal is
distinct from any previously reported condensed-matter materials, as
well as photonic or acoustic metamaterials (compared and summar-
ized in Supplementary Section 11 and Supplementary Table 1), and it
presents an intriguing case for quantum-mechanical studies. With an
extra valley at the center of the Brillouin zone, the quadratic-node
semimetal exhibits an extra dimension in its valley degree of freedom
compared to graphene, and the transmission in the extra valley can be
modulated independently to the Dirac valley. From the technological
perspective, with three valleys and numerous ways to gap them, the
quadratic-node semimetal can be explored as a new foundation in

Fig. 4 | The simultaneous Klein and anti-Klein tunneling for a hybrid chiral
particle in a p-n junction. a Schematic of the p-n junction, where the p-region
(blue) consists of narrower rings (hence higher resonant energy) compared to the
n-region (red), creating a potential step ΔV. The absorption region (absorp.,
marked by black) absorbs any outgoing wave from the end of the p-region.
b Illustration of simultaneous Klein tunneling in the K′ valley and anti-Klein tun-
neling in the Γ valley in a quadratic-node semimetal p-n junction. The Klein tun-
neling features complete transmission, as the transmission process (red arrow)
conserves the pseudospin, while the reflection process requires pseudospin-
flipping. The anti-Klein tunneling features complete reflection, as the reflection
process conserves the pseudospin (yellow arrow), while the transmission process
requires pseudospin-flipping. c–h Experimental measurement and FEM simulation

of the chiral transport with coherent edge excitation and hybrid chiral particles.
c and f are thewavefunction intensity distribution in the sample plane. The n, p, and
absorber regions are labeled. Both transmission and reflection can be observed at
the junction from the coexisting Klein and anti-Klein tunneling. d and e are the
Fourier plane images captured with an aperture allowing only the n- (p-) region to
be imaged (Methods). The n-region shows reflection (two intensity peaks near the Γ
point,marked by the yellow arrow, with group velocities in the +x and -x directions,
respectively) from the anti-Klein tunneling near the quadratic valley and the
p-region shows transmission (white arrow) near the K′ Dirac valley, agreeing well
with the simulation result shown in g and h. Additional Fourier plane images and
simulations are shown in Supplementary Information Section 9.
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building integrated nonreciprocal topological devices40,41 and may
especially benefit applications harnessing inter-valley scattering
dynamics42 or valley-dependent optical effects43. In photonics, the spin-
momentum locking can be used for in-plane beam steering, and with
the capability of modulating the refractive index and hence the reso-
nance frequencies of the resonators (i.e., effective doping), the meta-
material can support transport channels and spin-valley dynamics
tunable in real-time with potential applications in communications,
information processing, power transfer, to name a few.

Methods
Device design and fabrication
The samples were fabricated on a silicon-on-insulator (SOI) substrate
with a 220-nm-thick silicon layer and silicon nitride cladding on top.
The homogeneous photonic semimetal characterized by cross-
polarization reflection (Fig. 3 and Supplementary Movies 1–3) in
design has a ring outer radius of 3.65 µm, width of 405 nm, angular
grating scatter size of 180 nm, and scatter order of 33 (so that WGM
order 34 has strong emission at the center of Brillouin zone, while
order 35 has strong emission at the first Brillouin zone boundary, see
Supplementary Section 6).

The homogeneous photonic semimetal nanoribbon in design has
a ring outer radius of 3.55 µm,width of 445 nm, angular grating scatter
size of 80 nm, and scatter order of 33. The scatter size for the
absorption layer gradually increases from 80nm to 180 nm to provide
dissipation by excessive scattering to the free space. The excitation
was implemented with a grating coupler and four stages of multi-
mode-interferometers (MMIs) shown in Supplementary Fig. 17b, which
split the single input waveguide into 24 waveguides that are connected
to the microrings on edge evanescently. Because each of the 24

waveguides have identical optical path, this excitation excites the
fundamental mode with (1,1)T pseudospin.

The photonic semimetal nanoribbon p-n junction in design has
a ring outer radius of 3.65 µm, width of 400nm for the n-region and
395 nm for the p-region, angular grating scatter size of 80 nm, and
scatter order of 33. The scatter size for the absorption layer gradually
increases from 80nm to 180nm. The excitation is identical to that in
the homogeneous nanoribbon. The gap between rings in all samples is
100 nm in design.

The samples were fabricated using standard nanofabrication
techniques. Hydrogen silsesquioxane (HSQ) solution in methyl iso-
butyl ketone (MIBK) (2:3 ratio) was used as negative electron beam
lithography resist, spin-coated onto SOI wafer. The ratio of HSQ
(FOX15) and MIBK was adjusted such that after exposure and devel-
opment the resist was sufficiently thick as an etching mask for the
subsequent etching process. The resist was then soft-baked and the
structure was written by electron beam exposure. Electrons convert
HSQ resist to an amorphous oxide. The patterned wafer was then
developed in tetramethylammonium hydroxide (TMAH) solution
(MFCD-26) at 60 °C for 40 sec and rinsed in DI water for 30 sec. The
exposed and developed HSQ served as a mask for the subsequent
reactive ion etching process that uses SF6/C4F8 plasma. After dry
etching, 3-μm thick silicon nitride was deposited by plasma-enhanced
chemical vapor deposition (PECVD).

Optical characterization
The characterization setup is illustrated in Supplementary Fig. 18. For
cross-polarization reflection measurement, we excite the sample with
linearly polarized monochromatic light at a broadband of angles and
detect reflected light with an analyzer aligned orthogonal to the inci-
dent polarization. As a result of cross-polarization filtering, we can
detect non-zero reflection only when the lattice Bloch mode has
polarization oblique (i.e., neither identical nor orthogonal) to the
incident polarization. The first aperture (the one closest to the tunable
laser) is used during cross-polarization reflection measurements to

confine the incident angle to within the first Brillouin zone, so that
there is no overlap between signals from different Brillouin zones. For
the characterization of specific band touching points (Fig. 2f–i), this
aperture is used to allow only incident angles near the band touching
points to pass through to the sample. The half-wave plate (HWP) was
used as a convenient way to perform simultaneous rotation of the
incident polarization and the effective analyzer polarization.

For characterization of the transport, incident polarization is
aligned with the grating coupler (horizontal), and the analyzer is ver-
tical, which is most efficient for the detection of the (1,1)T pseudospin
and to suppress noise from the direct scattering of the incident light.
Evenwith this cross-polarization filtering, we still observe scattering of
stray light (possibly from light leaking out of the MMIs and subse-
quently scattered by the rings) that is especially strong in the first
Brillouin zone. To mitigate this noise introduced by the stray light, we
perform Fourier space imaging in the hexagonal Brillouin zone that is
directly above the first Brillouin zone. The second aperture (the one in
the image plane) is used during the transport characterizations to
allow only a specific region from the nanoribbon to be imaged in the
Fourier plane. During the characterization of the p-n junction (Fig. 4
and Supplementary Fig. 15), the aperture (rectangular, consisting of an
adjustable slit and two knife edges) was used to allow only n- and
p-regions to be imaged.

Data availability
All data are available in the main text or the supplementary informa-
tion files. All raw data generated during the current study are available
from the corresponding authors upon request.

Code availability
The FEM simulation models can be provided by the corresponding
authors upon request.
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