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Conductance interference in a superconducting Coulomb blockaded Majorana ring
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By tuning the magnetic flux, the two ends of a 1D topological superconductor weakly coupled to a normal
metal as a ring-shaped junction can host split Majorana zero modes (MZMs). When this ring geometry becomes
Coulomb blockaded, and the two leads come into contact with the two wire ends, the current moves through
the superconductor or the normal metal as an interferometer. The two-terminal interference conductance can
be experimentally measured as a function of gate voltage and magnetic flux through the ring. However, a 4π

periodicity in the conductance-phase relation (often considered the hallmark of MZMs), which can arise both in
a topological superconductor and in a trivial metal, cannot establish the existence of MZMs. We show that the
trivial metal phase can be ruled out in favor of a topological superconductor by studying persistent conductance
distribution patterns. In particular, in the presence of MZMs, the conductance peak spacings of the Coulomb
blockaded junction would manifest line crossings as the magnetic flux varies. The locations of the line crossings
can distinguish line crossings stemming from the trivial metal.
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Pursuing fault-tolerant quantum computation has been a
primary motivation in searching for robust non-Abelian topo-
logical excitation in nature. A localized Majorana zero mode
(MZM), perhaps the most promising candidate, has been
actively studied theoretically [1–4] and experimentally [5–11].
Although Majorana braiding schemes for quantum computing
have been proposed in the literature [12–14], it is unclear at
this stage whether sufficient experimental evidence exists pro-
viding compelling support for the existence of MZMs. In this
paper, we propose an interference experiment in a Coulomb
blockaded topological superconductor ring with magnetic flux
in order to provide sufficient and definitive evidence for the
existence of MZMs in semiconductor nanowires. It turns out
that the theoretical analysis of MZM conductance in a ring
structure is quite subtle.

A Coulomb blockade device is small enough so that in-
serting electrons into the device costs a significant amount
of Coulomb charging energy, which dramatically affects the
experimental behavior including MZM physics. Coulomb
blockade physics has been incorporated in the theoretical study
of topological superconductors in the context of tunneling
transport experiments [15–19]. An important experimental
breakthrough in Coulomb blockaded nanowires is the two-
terminal conductance measurement in a spin-orbit coupled
superconducting semiconductor nanowire under an applied
magnetic field [11]. The observed oscillations of the con-
ductance peak spacings [11] bring new physics to measure
MZMs. The superconducting Coulomb blockaded nanowire
manifests both 1e and 2e tunneling signatures through the
system with the 2e effect presumed to be the ordinary Andreev
transport. As the lowest energy level of the wire is less than
the Coulomb blockade charging energy Ec, the 1e tunneling
dominates transport and exhibits 1e periodicity as a function of
the gate voltage Vg . In this paper, we focus on the 1e tunneling
region to study the MZM signatures since this appears to

be the prominent transport channel in the Coulomb blockade
device.

Coherent electron teleportation [17,20], which is the MZM
smoking gun signature, has been discussed in the theoretical
literature. In this scenario, an electron that is coherently
transported from one Andreev Bound state [16,21] can be
observed by detecting 4π periodic Aharonov-Bohm (A-B)
oscillations, as electrons travel in a ringlike geometry similar
to the one shown in Fig. 1.

Here we consider the possibility of the A-B oscillations
that would arise because of teleportation. For this purpose,
we consider the setup in Fig. 1, where an electron transported
between the leads L and R can either be teleported through the
Majorana wire (shown in blue) or through the normal segment,
leading to current interference if the system is phase coherent
(i.e., very low temperature). The entire system is Coulomb
blockaded to support a definite number of electrons. When the
blue region in Fig. 1 is an ideal spin-orbit coupled nanowire,
the application of a Zeeman field (above a critical field
[1–3]) should transform the wire into the topological phase
with MZMs localized at the wire ends. The transported elec-
trons in the topological phase would have two paths to go
from L to R—one through the wire and the other through the
red quantum dot. The interference of the electrons between
these distinct paths is expected to manifest itself in an h/e flux
dependence of the conductance of the system [15,17,22,23].
These oscillations of 4π periodicity can also be thought of
as arising from the fractional Josephson effect [22,24–27] in
the ring Josephson junction shown in Fig. 1. The Coulomb
blockade constrains the number of particles in the system and in
some situations may lead to 4π periodicity of superconducting
transport properties of the system [28].

Specifically, in this paper, we consider a microscopic model
for normal transport in the system shown in Fig. 1. An impor-
tant question here is how to distinguish the 4π -periodic MZM
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FIG. 1. The schematic of the Coulomb blockaded Majorana ring.
The blue region represents the superconducting nanowire (1 � j �
L), while the red color (j = 0) represents a nonsuperconducting
site weakly coupling with the two wire ends. The two leads (dark
yellow) come into contact with the wires ends (j = 1,L) to measure
the conductance as the gate voltage Vg applied on this ring and
the magnetic flux � goes the middle of the ring. The current
moves from one lead to the other through the superconductor or the
nonsuperconducting site as an interferometer.

oscillations from the trivial A-B oscillations in a normal metal
ring. The problem, of course, is that one cannot a priori rule
out the possibility of nonsuperconducting A-B transport in this
ring geometry leading to A-B oscillations, which are always 4π

periodic. Despite the fact that the 4π -periodic oscillation (i.e.,
the fractional Josephson effect) strongly distinguishes topolog-
ical superconductors from conventional superconductors (the
regular Josephson effect), 4π also happens to be the periodicity
of A-B oscillations where a nonsuperconducting metal ring
replaces the blue region in Fig. 1. A small gap or near critical
superconductor has long correlation lengths similar to a normal
metal and can also manifest 4π -periodic oscillations. Hence,
the observation of the fractional Josephson effect [6,29–31]
is not conclusive evidence of MZM existence unless normal
A-B effect can be decisively ruled out. Solutions proposed to
this problem, such as varying the charging energy [16], do not
appear to be feasible in the present experimental setups [11].
This motivates us to compare the conductance spectra of such
gapless trivial states to the topological system. Interestingly, we
find that the conductance of the critical/gapless system indeed
manifests 4π -periodic oscillations similar to the topological
system. Therefore, 4π -periodic oscillations cannot be the sole
means of identifying topological phases. However, a measure-
ment of the excitation gap by comparing the conductance peak
spacings, which is a feasible measurement already used in
Ref. [11], allows one to distinguish the topological phase from
the critical/gapless trivial system.

The remainder of this paper is organized as follows. In
Sec. I, we first establish an interferometer setup for topological
superconducting nanowire as well as trivial metal one as a
comparison. To propose the observable features of the topo-
logical superconductivity and to avoid quasiparticle poisoning,
we consider the interferometer is small enough to become
Coulomb blockaded and further review the recipe to compute

the conductance of the superconducting Coulomb blockade.
In Sec. II, we show the conductance as a function of the
magnetic flux for the different interferometers and compare
the conductance features of the topological superconductivity
with the trivial superconductor and the trivial metal. Section III
is devoted to the study of the conductance peak spacings, which
are another observable revealing the topological superconduc-
tivity. In Sec. IV, we show the appearance of the MZMs can
be manipulated by adjusting the Zeeman field along the spin
orbital coupling in the wire. Finally, in Sec. V we conclude the
paper and give an outlook on future research.

I. INTERFEROMETER SETUPS

The experimental setup we propose is shown schematically
in Fig. 1 with current leads L and R in contact with the ends
of a superconducting proximitized nanowire in the presence
of spin-orbit coupling. By tuning Zeeman splitting strength,
the nanowire passes through the topological quantum phase
transition (TQPT), then hosting MZMs at the wire ends.
In this topological superconductivity region, we further destroy
the MZMs by introducing the coupling between the two wire
ends and a nonsuperconducting metal to form a ring geometry
as illustrated in Fig. 1 and further insert magnetic flux � in
the unit of flux quantum h/2e going through the middle of the
ring. The ring setup is small enough to become Coulomb block-
aded. In this paper, we numerically compute the two-terminal
conductance of the Coulomb blockaded ring and propose
observable and distinguishable MZM features. In particular,
we show that the evidence for the topological superconductor
hosting MZMs is the line crossings of the conductance peak
spacings at the specific values of the superconducting phase
differences between the nanowire ends stemming from the
inserting magnetic flux.

We start with the model of the 1D superconducting proxim-
itized semiconductor nanowire with spin-orbit coupling in the
presence of a field-induced Zeeman spin splitting [2,3]. As its
two ends weakly couple with a nonsuperconducting site, the
lattice Hamiltonian can be written as

Ĥ
ring
BdG =

∑
1�j�L

{C†
j [(2t − μ)τzσ0 + �0τyσy

+Vzτzσz + Vyτ0σy]Cj

+ [C†
j+1(−tτzσ0 + αiτzσy)Cj + H.c.]}

+w(C†
0τzC1 + C

†
0τzCL + H.c.), (1)

where Pauli matrix σα represents spin degree of freedom and
Cj = (c↑j ,c↓j ,c

†
↑j ,c

†
↓j )T indicates the vector including the

Fermion annihilation and creation operators represented by
τα . The last term in the Hamiltonian represents a nonsupercon-
ducting state (C0) weakly coupling with the two ends of the
superconducting wire. (We note that this nonsuperconducting
normal arm is about the same length as the superconducting
wire. We specially consider large Fermi velocity so that the
normal arm is effective short.) The left and right leads come
into contact with the first site C1 and the last site CL for the
measurement of the two-terminal conductance as illustrated in
Fig. 1. The results of the observables closely depend on the
value of the Zeeman field (Vy) in parallel with the direction of
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the nanowire spin orbital coupling. To simplify the problem,
we consider only the Zeeman field (Vz) perpendicular to the
direction of the spin orbital coupling first and recover nonzero
Vy later.

The magnetic flux � through the middle of the ring can
be addressed by the Peierls substitution in the BdG Hamilto-
nian (1): for j �= 0

C
†
j�0τyσyCj → C

†
j�0[cos(2jφ)τyσy + sin(2jφ)τxσy]Cj ,

(2)

C
†
j+1(−tτzσ0 + αiτzσy)Cj

→ C
†
j+1

[
(τz + τ0)e−iφ + (τz − τ0)eiφ

]−tσ0 + αiσy

2
Cj ,

(3)

where φ = �/2L. The superconducting phase difference be-
tween the two wire ends is given by �(L − 1)/L ∼ � in
the large-L limit. By performing the exact diagonalization
for Ĥ

ring
BdG of the superconducting nanowire without non-

superconducting site (C0), the calculated energy spectrum in
Fig. 2(a) shows that the TQPT is located at Vzc =

√
�2

0 + μ2 =
0.922 meV. Furthermore, in the presence of the nonsupercon-
ducting site (C0) and the coupling w = 0.1 meV, the energy
level always has a small gap as the Zeeman field (Vz) increases
as shown in Fig. 2(c). We label Ep in ascending order as the
quasiparticle energy levels of the ring with respect to the BCS
ground state and E1 represents the energy difference between
the lowest energy BCS states with the odd and even parities.
(At � = 0, Vz = 0, we choose E1 > 0 for the BCS ground
state with even parity.) The Zeeman field Vz and the magnetic
flux � vary, the BCS wave function adiabatically evolves with
its fermion parity remaining fixed. To compare features of the
topological superconductivity, we introduce the trivial metal
nanowire with superconducting gap �0 → 0 as the trivial
topological phase. The spectra of the metal nanowire and ring
exhibits multiple zero energy crossings as shown in Figs. 2(b)
and 2(d).

Now we consider a situation where the ring becomes
Coulomb blockaded with charging energy Ec. To compute the
conductance, we use the already developed master equation
formalism [19] by assuming that the tunneling rates between
the leads and the wire ends are much less than the system
temperature (T ) and the energy level spacing. We use the
tunneling rates between the leads and the wire ends defined
in Ref. [19]. Furthermore, we assume that the charging energy
Ec (=2 meV in the following calculation) is large enough so
that only the two lowest energy levels U (N + 1) and U (N ) of
the electrostatic energy

U (N ) = Ec(N − ng)2, (4)

are involved in transport with the energy levels of the other
electron numbers being too high to be important. The gate
voltage (Vg) of the ring is an experimentally controllable
physical parameter, which is proportional to ng since ng =
CVg/e, where C is the ring capacitance. In the following, the
conductance is computed as a function of normalized gate volt-
age (ng) and the flux �. In a superconductor, since the physics
is not altered by the transformation N → N + 2 and ng →

(meV)
E

(meV)
E

Vz (meV) Vz (meV)

(a) (b)

(c) (d)

FIG. 2. Energy spectra for the single nanowire and the inter-
ferometer ring as illustrated in Fig. 1. In the absence of the non-
superconducting site [(a),(b)] represents the energy spectra of the
semiconductor nanowire with superconductivity �0 = 0.9 meV and
without superconducting gap �0 → 0 meV, respectively. (c),(d) show
in the absence of the magnetic flux (� = 0) the energy spectra
of the superconducting and trivial metal rings with the coupling
(w = 0.1 meV) between the nonsuperconducting site (j = 0) and
the superconducting nanowire ends (j = 1, L). This coupling in the
superconducting ring always keeps the lowest energy level away from
zero, although there is a low-energy state in the nonsuperconducting
site as a normal metal. On the other hand, in nonsuperconducting ring,
asVz increases, the energy level sometimes reaches to zero energy. The
values of the remaining parameters are based on Ref. [19] with the
lattice constant a = 15 nm: hopping strength t = 6 meV (effective
mass = 1.5 × 104 eV/c2), spin-orbit coupling α = 1.2 meV, super-
conducting order parameter �0 = 0.9 meV, the chemical potential
μ = 0.2 meV, and the length of the wire L = 80 (1.2 μm). These
parameters are used for the following conductance calculation.

ng + 2 in Eq. (4) (adding a Cooper pair), the conductance as
a function of ng exhibits 2e periodicity. We further assume
that for the trivial metal ring also has this 2e periodicity since
the ring is deposited on the top of the superconductor. Hence,
computing the conductance with even and odd particle number
(N ) is enough to describe the interference phenomenon.

We have to define the lowest energy BCS states with N

and N + 1 particle numbers, respectively, as base states, since
the Coulomb blockade conductance computed in the master
equation formalism [19] is mainly based on these base states.
At the beginning (Vz = 0, � = 0), all of the quasiparticle
energy levels Ei are chosen to be positive and the lowest energy
BCS state with even particle number is defined to obey

aEp
|BCSe〉 = 0, (5)

for all p, where aEp
is the quasiparticle annihilation operator.

Hence, |BCSe〉 is the BCS ground state. As Vz and � vary,
the fermion parity of the base state should be fixed and the
lowest positive energy level E1 might reach zero as a band
crossing. After this energy band crossing, |BCSe〉 evolves to
the BCS first excited state still obeying (5) and the value of the
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FIG. 3. For the superconducting interferometer, quasiparticle and quasihole spectrum, conductance, and conductance peak spacings as the
Zeeman potential VZ , which is perpendicular to the spin-orbital direction, is tuned to change the phase from the conventional phase [panels (b)]
(Vz = 0.75 meV), through the TQPT [panels (c)] (Vzc = 0.922 meV) to the topological phase [panels (d)] (Vz = 1.2 meV). Panel (a) shows the
positive energy level closest to zero energy and the blue color indicates the presence of the MZMs localized at the ends of the superconducting
nanowire at � = π, 3π . The two blue color lines merge at the TQPT (Vzc = 0.922 meV). Panels (1) represent the energy spectra of the ring at
fixed Vz’s, while panels (2) and (3) show the conductance at temperature T = 0.01 meV with even and odd particle number N , respectively. As
expected all quantities in panels (b1), (b2), and (b3) are 2π periodic in the flux �. In contrast, in the topological phase due to the line crossings
(E1 = 0) at � = π, 3π [panel (d1)] [25,32], the conductance oscillations [panels (d2) and (d3)], which are 4π periodic, are distinguishable from
the conventional superconductor case. While the spectra are 4π periodic in the critical region [panel (c1)], which is similar to a conventional
metal, the conductance oscillations [panels (c2) and (c3)] are 4π periodic. Panels (4) represent the conductance peak spacings for even Se (black)
and odd So (orange) parities at T = 0.01 meV. The important MZM feature is that the crossing of the two parity lines are fixed at � = π,3π

as Vz varies in the topological region since panel (a) shows MZMs are always located at � = π ,3π ; elsewhere, the lines of the spacings are
flat and close to 1.

energy level E1 is changed to negative from positive. Although
the entire qausiparticle and quasihole energy spectra (±Ei) are
identical, as the base state with even fermion parity has negative
E1, the different quasiparticle energy spectra (−|E1|,Ei �=1) and
(|E1|,Ei �=1) do lead to the two distinguishable conductances.
As Vz and � continuously change, after the next zero energy
crossing, the base state with the fixed fermion parity evolves
back to the BCS ground state until the third band crossing and
so on.

Similarly, at the beginning (Vz = 0, � = 0), the lowest
energy BCS state with odd particle number obeys

a−E1 |BCSo〉 = 0, aEp �=1 |BCSo〉 = 0, (6)

where the quasiparticle annihilation operator a−E with energy
−E is equivalent to the qausihole annihilation operator a

†
E

with energy E. After the first gap closes E1 = 0, with the fixed
parity |BCSo〉becomes the BCS ground state from the BCS first
excited state. When the second gap closing is passed, |BCSo〉
goes back to the BCS first excited state. We carry out our
numerical calculations following the parity-fixed prescription
above.

II. COULOMB BLOCKADED CONDUCTANCE

The conductance and the conductance peak spacings can
reveal some features of the topological superconducting ring
in the trivial [Vz < Vzc, Fig. 3(b)], TQTP [Vz = Vzc, Fig. 3(c)],
and topological [Vz > Vzc, Fig. 3(d)] regions. The MZMs with

zero energy appear at � = 0, 3π after TQTP as illustrated in
Fig. 3(a), which shows the lowest energy level of the supercon-
ducting ring as Vz and � vary. In the gapped superconductor
(Vz �= Vzc) the quasiparticle and quasihole energy spectrum
(±Ei) [Figs. 3(b1) and 3(d1)] always exhibits the 2π period-
icity of the magnetic flux. As the flux increases from 0 to 2π ,
in the absence of the gap closing [Fig. 3(b1)], the quasiparticle
energy levels Ep evolve back to the original spectrum. Hence,
since the spectra with � = 0, 2π are identical, the conductance
always has 2π -periodic oscillation. The coupling between the
normal site and the wire ends completely keeps the entire
system gapped (E1 �= 0) in the trivial region (Vz < Vzc) as
shown in the ring spectrum of Figs. 3(a) and 3(b1); thus, the
conductance oscillation is 2π periodic and consistent with the
numerical result in Figs. 3(b2) and 3(b3).

Near the TQTP point, the energy spectrum [Fig. 3(c1)]
exhibits the periodicity of 4π . Hence, the conductance oscil-
lations in Figs. 3(c2) and 3(c3) also are 4π periodic. This 4π

periodicity is similar to the conductance of the trivial metal
ring, which will be discussed later.

In the topological region (Vz > Vzc), as the flux is adjusted
to π, 3π , MZMs appear on the ends (the first and Lth sites) of
the nanowire [32] so that the energy gap is closing (E1 = 0)
as shown in Fig. 3(c1). The lowest quasiparticle energy level
E1 is changed to be negative from positive at � = π and back
to positive as � passes through 3π . Since the energy level E1

goes back to the original value after 4π flux, the system with
� = 0, 4π is identical. Thus, beyond the TQPT point, the 4π -
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FIG. 4. For the trivial metal interferometer, quasiparticle and quasihole spectrum, conductance, and conductance peak spacings show the
features of A-B effect. Panel (a) shows the positive energy level closest to zero energy and the blue color indicates zero energy modes, which
are not MZMs. A-B effect exhibits 4π periodicity of � in the trivial metal interferometer ring �0 → 0 for different fixed values of Vz:
(b) 1.225 meV, (c) 1.3 meV, (d) 1.375 meV. Panels (1), (2), (3), and (4) represent the identical physical quantities in Fig. 3, respectively.
Panels (1) show the � locations of the zero energy modes move around as Vz vary and even the zero energy modes vanish at some Vz’s. The
zero energy modes can be reflected by the crossing of the conductance peak spacings in panels (4).

periodic quasiparticle energy spectrum produces 4π -periodic
oscillation as shown in Figs. 3(c2) and 3(c3).

To distinguish topological superconductivity from normal-
metal A-B effect, we turn off the superconductivity �0 → 0
in the nanowire and the lowest energy spectrum of the normal
metal ring as a function of Vz and � is shown in Fig. 4(a). Due
to the nature of the normal metal, the zero energy modes, which
are definitely not MZMs, appear several times. The spectrum
exhibits the 4π periodicity of �, which can be seen the spectra,
as � varies, at the three fixed Vz values in Fig. 4. It is expected
that the conductances of the Coulomb blockaded normal metal
ring have the 4π periodicity of � in Figs. 4(2) and 4(3). The
normal metal conductance shows the nonsuperconducting wire
has the similar 4π -periodicity patterns with the topological su-
perconductor (Vz � Vzc) in Figs. 3(c2), 3(c3), 3(d2) and 3(d3).

The observation of 4π periodicity cannot directly lead to
the conclusion of the MZM existence, since in the presence of
the normal metal the conductance oscillation is also trivially
4π periodic as the manifestation of the usual A-B effect [16].
(This superficial agreement between interference phenomena
in a topological superconducting ring and a normal metal
ring arises simply from both systems manifesting 1e coherent
transport for different reasons.) Although the conductance-
phase relation has the same 4π periodicity in both cases,
the conductance distributions as a function of � and ng are
distinguishable. Since in the topological region the lowest
energy level [Fig. 3(a)] does not significantly change as Vz

varies, the conductance distribution patterns [Figs. 3(d2) and
3(d3)] persist at any Vz in the entire topological region whereas
the patterns alter dramatically as Vz varies in the normal metal;
these features are confirmed in our numerical simulation.
The observation of the conductance distribution persistence
in the topological region is the key feature distinguishing the
topological superconductor and the normal metal.

III. CONDUCTANCE PEAK SPACINGS

The measurement of the conductance peak spacings is an
important observable to probe the presence of the MZMs
possessing zero energy. The reason to study the conductance
peak spacings is that the spacings were successfully measured
in the Coulomb blockaded superconducting wire [11].

The location of the conductance peaks is determined by
the maximum conductance values of ng at fixed flux � and
Vz. At low temperature (T 	 E2), their gate voltage locations
for even and odd N are given by ne

g(N ) = N − E1/2Ec

and no
g(N ) = N + E1/2Ec, respectively, where the resonant

1e tunneling occurs. The important quantities studied in the
Coulomb blockade experiment [11] are the even and odd peak
spacings

So = ne
g(N + 1) − no

g(N ) = 1 − E1/Ec, (7)

Se = no
g(N + 1) − ne

g(N ) = 1 + E1/Ec, (8)

which are the differences between the two closest conductance
peaks. The spacings directly depict the lowest energy spectrum.
However, when at E2 � T the 2nd energy level affects the
location of the conductance peak, Eqs. (7) and (8) do not
hold. This is the reason we use the master equation formal-
ism for a superconducting Coulomb blockade to compute
conductance in the high-temperature generic situations since
the low-temperature constraint is unlikely to be satisfied
experimentally [19]. However, even at higher temperature,
when E1 = 0 in the presence of the MZMs, the even and
odd peak spacings [19] are identical due to the 1e tunneling
resonance. Hence, the energy level crossings at zero energy
in the superconducting spectrum are directly reflected by the
crossing of the conductance peak spacings.

We first discuss the conductance peak spacings for the
superconducting ring as shown in Fig. 3(4). In the topological
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FIG. 5. The conductance and the conductance peak spacing in
the topological region Vz = 1.2 meV [Fig. 3(c1)] at different tem-
peratures (a) T = 0.02 meV, (b) T = 0.07 meV, (c) T = 0.3 meV.
Panels (1), (2), and (3) represent the identical physical quantities
in Figs. 3(2), 3(3) and 3(4), respectively, except for temperature.
High temperature broadens the conductance peak and suppresses the
oscillation of the conductance peak spacings.

region, the appearance of the MZMs with E1 = 0 at � = π, 3π

leads to the crossing of the two conductance peak spacing lines.
It is confirmed by our numerical simulation that this crossing
feature can be seen at any Vz value in the topological region.
Although, as shown in Fig. 3(d1) near � = π, 3π , Eqs. (7)
and (8) do not hold due to the second energy level, which
is smaller than the temperature (E2 < T = 0.01 meV), 4π

periodicity of the conductance peak spacing [Fig. 3(d4)] shares
clear similarity with the lowest energy spectrum [Fig. 3(d1)].
On the contrary, in the trivial region and the TQPT, the
flatness of the lowest energy level and the suppression of
the second lowest energy level (<T = 0.01 meV) lead to flat
conductance peak spacing lines without the crossing as shown
in Figs. 3(b4) and 3(c4), contrasting with the topological
situation. Therefore, in going from the trivial system to the
topological superconductor, the transition of the conductance
peak spacing from flat lines to 4π -periodic oscillation and line
crossings should be observed.

The normal metal ring also exhibits line crossings in the
conductance peak spacings. However, as shown in Fig. 4(4),
the crossings move to different values of � and even vanish as
the Zeeman splitting Vz varies. Since the crossings are not fixed
for the trivial metal ring as Vz varies, the fixed line crossings of
the conductance peak spacings (at � = π,3π only for Vy = 0)
can be the evidence for MZMs.

Ideally, the temperature is expected to be low so that the
conductance peak spacings can faithfully depict the lowest
energy spectrum. High temperature might alter the observ-
able and disguise the MZM evidence. Figures 5(1) and 5(2)
show that in the topological region, the conductance peak is
broadened at higher temperature and the difference between
the two conductance peak spacings are suppressed by higher
temperature. As the temperature is too high, 4π periodicity
of the conductance-phase relation cannot even be observed
as shown in Figs. 5(1) and 5(2) and the conductance peak
spacing becomes flat as the temperature increases as shown in
Fig. 5(3).

IV. ZEEMAN FIELD ALONG THE SPIN ORBITAL
COUPLING DIRECTION

For this superconducting semiconductor nanowire interfer-
ometer, MZMs with exact zero energy appear at � = π, 3π

due to an effective time reversal symmetry. However, in reality
this symmetry can be easily broken by applying magnetic field
(Vy) along the spin-orbital coupling direction. In this section,
we derive the flux location of the MZMs as a function of the
Zeeman field along the spin-orbital direction. Our derivation
scheme is in the following. First, by turning off the coupling (w)
between the normal site and the ends of the superconducting
nanowire, we find the wave functions of the MZMs on the
nanowire ends in the presence of the magnetic flux. Then we
turn on the weak coupling between the two nanowire ends as a
first order perturbation. This perturbation energy can faithfully
describe the lowest energy in the topological superconducting
interferometer.

We start with the BdG Hamiltonian of the superconducting
semiconductor nanowire by Fourier transforming the super-
conducting part of the Hamiltonian (1) to momentum space

HBdG(k) = [2t(1 − cos k) − μ]τzσ0 + �0τyσy

+Vzτzσz + Vyτ0σy + 2α sin kτzσy. (9)

We are interested in the low energy theory near the Fermi level
as μ ≈ 2t(1 − cos k). The BdG Hamiltonian can be further
simplified to the continuous model

HBdG(k) ≈ 2αkτzσy + �0τyσy + Vzτzσz + Vyτ0σy. (10)

Since the focus is the low energy mode near one nanowire end
(x = L), the additional phase � of the superconducting order
parameter stemming from the magnetic flux can be assumed to
be a constant. With this additional phase, the order parameter
is given by �0 → �0e

i�. The low energy Hamiltonian can be
written as

HBdG(x) = 2ατzσy

∂

i∂x
+ �0 cos �τyσy

+�0 sin �τxσy + Vzτzσz + Vyτ0σy. (11)

The two wire ends are located at x = 0, L as domain
walls by assuming

√
�2

0 − V 2
y − Vz > 0 as 0 < x < L and√

�2
0 − V 2

y − Vz < 0 elsewhere. By solving the eigenvalue
problem at zero energy, this assumption leads to an unnor-
malized MZM wave function localized at x = 0 without the
additional superconducting phase (� = 0)

|φ0〉 = e− R−Vz
2α

x

⎛
⎜⎜⎝

−ieiβ/2

−ieiβ/2

ie−iβ/2

ie−iβ/2

⎞
⎟⎟⎠, (12)

where R =
√

�2
0 − V 2

y and β = arctan Vy

R
. In addition, another

MZM wave function localized at x = L is given by

|φL〉 = e
R−Vz

2α
(x−L)

⎛
⎜⎜⎝

ie−iβ/2+i�/2

−ie−iβ/2+i�/2

ieiβ/2−i�/2

−ieiβ/2−i�/2

⎞
⎟⎟⎠. (13)
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FIG. 6. The physics of the topological superconducting interferometer [(a)–(d)] with nonzero Zeeman field (Vy) along the spin orbital
coupling is compared with the normal metal interferometer. Panel (a) shows in the topological region at fixed Vz = 1.2 meV the energy level
closest to zero energy. The white dashed lines, which are the analytic solution of MZM � location described by Eq. (17) are consistent with the
blue color indicating the MZMs. Panels (1) represent the low energy spectra at the different values of Vy’s. As Vy increases, the MZMs move
away from � = 0, 3π . The conductance peak spacings in panels (2) show that the line crossings reflect the presence of the MZMs. On the
other hand, the energy level closest to zero energy in the trivial metal interferometer at Vz = 1.225 meV in panel (e) shows that the zero energy
modes (blue color) move differently as Vy varies. The � location of the crossing of the conductance peak spacings is an important observable
to distinguish the topological superconductivity and the trivial metal.

Since the coupling between the two wire ends is off, as long as
the wire length L is long enough, the energies of the two MZMs
are close to zero. We turn on the weak coupling between the
two ends as the extension of spin orbital coupling

�ĥ = iδ(C†
0τzσyCL − C

†
LτzσyC0). (14)

Consider this term as the first order perturbation; the low
energy effective Hamiltonian can be written as the coupling
sandwiched by the two MZMs

�H =
(〈φ0|�ĥ|φ0〉 〈φ0|�ĥ|φL〉

〈φL|�ĥ|φ0〉 〈φL|�ĥ|φL〉
)

(15)

∝4δ sin(β − �/2)

(
0 −i

i 0

)
. (16)

The energy level crossing (zero energy) occurs as �H = 0 at

� = (3)π + 2β. (17)

Hence, as Vy = 0, the MZMs appear at � = π, 3π ; otherwise,
the MZMs are not fixed at � = π, 3π .

Back to the simulation of the superconducting ring, we
recover the Zeeman field (Vy) along the spin orbital coupling
direction and adjust Vz to the topological region. The inter-
ferometer ring is still described by the Hamiltonian (1) with
nonzero Vz. The energy spectra in Figs. 6(a) and 6(1) show that
the MZMs move away from � = π, 3π and the locations of the
MZMs are consistent with the analytic solution (17). Hence,
this analytic solution also predicts the crossing locations of
the conductance peak spacings as shown in Fig. 6(2). That is,
once the physical values of Vy and �0, which determine β,
are known, if � = (3)π + 2β are identical to the location of
the crossings observed, this directly supports the existence of
the MZMs. We can further compare the MZM locations with

the lowest energy spectrum of the trivial metal ring as shown
in Fig. 6(e). The zero energy modes, which are not the MZMs,
lead to the crossings of the conductance peak spacings and the
distribution of these zero modes is completely different from
the topological superconductor hosting MZMs. Therefore, the
locations of the observed crossings can clearly distinguish
the topological superconducting interferometer from the trivial
metal interferometer.

V. CONCLUSION

As the Zeeman field Vz increases, observing the transi-
tion of the phase-current relation from 2π periodicity to 4π

periodicity is the preliminary step. However, the transition
from a superconductor to a normal metal shares the same
periodicity. The details of the observable conductance can ex-
clude the trivial metal scenario. The conductance distribution
patterns in the topological region do not alter as a function
of Vz, whereas the conductance patterns of the normal metal
always change as a function of Vz. In the topological region the
line crossing of the conductance peak spacings, which reflect
the � location of the MZM, always occurs at � = π, 3π

in the absence of the Zeeman field along the spin orbital
coupling direction, while the crossing locations of the trivial
metal change with Vz. Even in the presence of the Zeeman field
along the spin orbital coupling direction, the � location of the
line crossing can be analytically predicted. These conductance
interference features can serve to distinguish the topological
nanowire ring from a normal metal experimentally.
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