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It is known that the low-energy physics of the Josephson effect in the presence of Majorana zero modes
exhibits a 4π periodicity as the Aharonov-Bohm flux varies in contrast to the 2π Josephson periodicity in
usual superconducting junctions. We study this fractional Josephson effect in one-dimensional topological
superconductors in Majorana nanowire systems by focusing on the features of the phase-energy relations in
a superconducting semiconductor nanowire with spin-orbital coupling by including different factors operational
in experimental systems, such as short wire length, suppression of superconducting gap, and the presence of an
Andreev bound state. We show that even in the absence of the Majorana zero modes, some nontopological phys-
ical effects can manifest a 4π periodicity of the phase-energy relation in the Josephson junction, thus providing
an alternative physics for fractional Josephson effect with no underlying Majorana zero modes. Furthermore, we
consider several scenarios of inhomogeneous chemical potential distributions in the superconducting nanowire
leading to four Majorana bound states and construct the effective four-Majorana model to correctly describe the
low-energy theory of the Josephson effect. In this setup, multiple Majorana zero modes can also have the 4π

fractional Josephson effect, although the underlying physics arises from Andreev bound states since two close-by
Majorana bound states effectively form Andreev bound states. Our work demonstrates that the mere observation
of a fractional Josephson effect simulating 4π periodicity might not, by itself, be taken as the definitive evidence
for topological superconductivity. This finding has important implications for the ongoing search for non-Abelian
Majorana zero modes and efforts for developing topological qubits.

DOI: 10.1103/PhysRevB.99.035312

I. INTRODUCTION

Topological phases of matter [1–3] possess robust bound-
ary states protected by topology against weak perturbations in
bulk gapped systems and have attracted great attention in the
condensed matter community. In particular, in a topological
superconductor (TSC) novel Majorana zero modes [4–12]
(MZMs), which are their own antiparticles, have arisen from
the encouraging experimental progress [6–12] during the past
six years. One of the particularly promising platforms [13,14]
to host and probe MZMs is a superconducting proximitized
semiconductor nanowire with spin-orbital coupling and ad-
justable Zeeman splitting [15–17]. It is theoretically well
established that the combination of the spin-orbital coupling
and the Zeeman spin splitting converts an ordinary s-wave
superconductor (SC) into an effective spinless p-wave TSC
provided that the Zeeman splitting is large enough for the sys-
tem to be in the topological regime hosting MZMs [15–17].
The recent observation of the 2e2/h quantized conductance
peak [18,19] at zero-bias voltage in this nanowire setup is a
significant breakthrough providing support for the existence
of MZMs. But, the zero-bias tunnel conductance peak is only
a necessary condition for MZMs, and cannot decisively estab-
lish their existence. In addition to the zero-bias conductance
peak, a TSC with MZMs should also manifest the so-called
fractional Josephson effect, where the Josephson periodicity
is 4π rather than 2π [4,16,20]. The current work takes a
deeper look at the fractional Josephson effect physics of

MZM-carrying TSC, and shows that the 4π fractional Joseph-
son effect is also merely a necessary, but not a sufficient,
condition for establishing the MZM existence, and as such
experimental claims for the manifestation of any fractional
Josephson effect must also be treated with caution in this
context.

Controlling MZMs to build fault-tolerant quantum gates
is one of the leading directions to achieve quantum com-
putation [21]. However, it has been established [22,23] that
although braiding MZMs offers the topological protection
of the Majorana qubits, without additional nontopological
gates, this MZM braiding scheme cannot achieve universal
quantum computation. Hence, for quantum computation, the
topological protection has to be sacrificed to some extent by
tuning the couplings of MZMs in order to manipulate the
Majorana qubits and to make dense gate operations compu-
tationally. It has been proposed that adjusting the magnetic
flux in the Josephson junction hosting MZMs can experimen-
tally achieve the tuning of the MZM couplings [24–27] in
these gate operations, and the Majorana Josephson junction
is recognized as one of the basic building blocks to construct
quantum gates. Therefore, understanding the physics of the
Majorana Josephson junction is an important task toward
quantum computation.

It was predicted by Kitaev [4] that the Majorana Josephson
effect with a 4π periodicity as a function of the magnetic flux
(�) should emerge in an idealized model of a spinless p-wave
topological superconductor carrying MZMs. Since the direct
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FIG. 1. The schematic of the Josephson junction considered
in the theory. The green region represents the superconducting
nanowire (1 � j � L), while the purple color represents a thin
junction so that the effective low-energy physics can be described
by a weak coupling between the two wire ends. The magnetic flux �

through the middle of the ring leads to the phase difference between
the two ends of the superconducting nanowire. We study the �-E
relation in this system incorporating various physical effects in the
presence or absence of MZMs.

experimental realization of a spinless p-wave superconductor
is challenging, alternative setups for the Majorana Josephson
junctions have been theoretically proposed [20,28–32] and
experimentally studied [7,33–36] in the literature. Although
in these experiments the 4π periodicity was observed, other
nontopological factors, such as the suppression of the super-
conducting gap, can also manifest an effective 4π periodicity
in the absence of MZMs [37–39]; therefore, the observation
of the 4π periodicity might be not decisive to conclude the
existence of the topological superconductors hosting MZMs.
In fact, the experimental situation is confusing here with the
claimed observations of the 4π Josephson effect not repro-
duced typically and not fitting well generally with theoretical
expectations.

In this paper, we theoretically examine nontrivial and
trivial TSC Josephson junctions mediated by a superconduct-
ing proximitized semiconductor nanowire with and without
MZMs in depth. A detailed theoretical analysis of the TSC
Josephson junctions associated with semiconductor nanowires
is timely given the great current interest in this system as a
platform for quantum computation and in the context of the
recent observation of the MZM conductance quantization in
the nanowires [33].

As shown in Fig. 1, the Josephson junction setup con-
sidered in our work, the wire-junction system, encloses a
magnetic flux as usual, leading to the Aharonov-Bohm phase.
The two ends of the superconducting nanowire with different
Aharonov-Bohm phases weakly couple as a Josephson junc-
tion due to the coherent tunneling of electrons. The difference
between the Aharonov-Bohm phases in the wire ends, which
stems from the magnetic flux (�), leads to an oscillation
of the quasiparticle and quasihole energy spectrum. The hy-
bridized MZMs in the wire ends lead to the low-energy phase-
dependent spectrum E ∝ cos(�/2), exhibiting a 4π periodic-
ity [4,20]. In reality, the experimental setup of the trivial and
nontrivial TSCs might possess unavoidable physical effects
affecting the periodicity in �, such as short wire length,
superconductor gap suppression, the presence of an Andreev
bound state (ABS), and inhomogeneous potential distribution.
By separately including various physical mechanisms related

to the 2π and 4π periodicities, we obtain theoretically the
phase-energy (�-E) relations to understand the physics of the
Josephson effect with and without MZMs.

The remainder of this paper is organized as follows. In
Sec. II, we derive the low-energy physics in the continuum
model of the Josephson effect hosting two MZMs separately
at the wire ends of the topological superconductor. We show
that tunneling through the junction leads to 4π periodic-
ity, and that the finite-size effect of the short wire length
manifests �-independent energy splitting of these MZMs.
Section III provides the Josephson junction lattice model of
the superconducting semiconductor nanowire with realistic
physical parameters. In Sec. IV, by using the lattice model, we
calculate the �-E relation of superconducting semiconductor
Josephson junctions in separate situations with distinct phys-
ical constraints: short wire length, superconducting gap sup-
pression, and the presence of an ABS induced in a quantum
dot. In Sec. VI, we consider the realistic experimental setup
[33] with a long conventional superconductor in the middle of
wire and the topological superconductors are on the two sides
of the trivial superconductor. We examine if the trivial cases
leading to the 4π periodicity can be excluded by this setup of
the long trivial superconductor. Section V is devoted to the
�-E relation in the presence of inhomogeneous potentials,
which produce two separate topological regions in the wire
hosting multiple MZMs. Finally, in Sec. VII we summarize
the various factors affecting the periodicity of the Josephson
junction. We note that we have considered some of the more
important physical mechanisms affecting the Josephson junc-
tion MZM physics in nanowires, and there may very well
be other factors, not considered in our work, which could
affect the TSC Josephson effect in nanowires. Moreover, to
circumvent nonessential complexity, we consider Landau-
Zener tunneling [40,41] to be absent by assuming that the
system always adiabatically evolves at zero temperature with
the conservation of fermion parity as the magnetic flux varies.

II. CONTINUUM MODEL FOR FRACTIONAL
JOSEPHSON EFFECT

Before considering specific models of Josephson junctions
mediated by the superconducting-proximitized nanowire, we
first use the continuum theory of a TSC to show that the
�-E relationship is simply proportional to cos(�/2) leading
to a 4π periodicity. This relation stems from the hybridized
MZMs in the TSC near the two wire ends. Furthermore,
since the nanowire forming the junction is invariably of
finite length leading to MZM wave-function overlap from
the two ends, the hybridization of the MZMs in the wire
manifests energy splitting [42,43]. We show that this MZM
overlap energy splitting is � independent. Our derivation
scheme is in the following. First, by considering the supercon-
ducting nanowire in the open boundary condition, we find the
MZM wave functions at the nanowire ends as domain walls.
Then, in the presence of the magnetic flux � we turn on the
weak coupling between the two nanowire ends as a first-order
perturbation. This perturbation energy as the effective lowest
energy is the key for the Majorana Josephson junction. We
further show that a MZM in one wire end is not an exact
eigenstate at the other end so that the two Majorana end modes
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hybridize through the wire. We use the fundamental unit of
magnetic flux, φ0 = h/2e, as the unit of flux so that the flux
� is the same as the phase difference between the two wire
ends in our notation, and a phase function cos �(cos �/2)
automatically implies 2π (4π ) periodicity in the Josephson
effect.

We start with the Bogoliubov–de Gennes (BdG) Hamilto-
nian of the one-dimensional (1D) superconducting semicon-
ductor nanowire in momentum space [15–17]

HBdG(k) = [2t (1 − cos k) − μ]τzσ0 + �0τyσy

+Vzτzσz + 2α sin kτzσy, (1)

where Pauli matrices τα and σβ represent the usual particle-
hole and spin- 1

2 degrees of freedom, respectively, the su-
perconducting order parameter �0 is a positive constant, t

is the strength of the nearest-neighbor hopping, μ chemical
potential, Vz Zeeman splitting energy, α spin-orbit coupling;
we further choose the lattice constant a ≡ 1. For large Zeeman
splitting Vz, the superconducting nanowire is in the topolog-
ical phase hosting MZMs at the wire ends. We are interested
in the low-energy theory near the Fermi level as μ ≈ 2t (1 −
cos k). The BdG Hamiltonian can be further simplified in the
continuum approximation

HBdG(k) ≈ 2αkτzσy + �0τyσy + Vzτzσz. (2)

Since our focus is on the Majorana bound states near the
nanowire boundaries (x = 0, L, where L is the nanowire
length), for 0 � x � L the phase of the superconducting
order parameter �x = �x/L is position dependent, where �

indicates the magnetic flux through the wire. That is, �x = 0
for x = 0 and �x = � for x = L. With this additional flux-
induced phase, the order parameter is changed to �0c

†
x↑c

†
x↓ →

�0e
i�x c

†
x↑c

†
x↓ and the momenta for particles and holes have

different transformations k → k − eA, k + eA, respectively,
where the magnetic potential A = �/2eL for 0 � x � L. The
low-energy Hamiltonian with the magnetic flux � can be
written as

HBdG(x) = 2α

(
τzσy

∂

i∂x
− eAτ0σy

)
+ �0 cos �xτyσy

+ �0 sin �xτxσy + Vzτzσz, (3)

where we assume h̄ ≡ 1. The two wire ends are located at
x = 0, L as domain walls (the wire boundary is equivalent
to a domain wall), which follow Vz is a constant (Vz0) and
Vz − �0 > 0 for 0 < x < L and Vz = 0 elsewhere. That is,
we introduce the trivial region (x < 0 and x > L) sandwich-
ing the topological region (0 � x � L). The two important
parameters are given by A = 0, �x = 0 for x < 0 and A =
0, �x = � for x > L. By solving the eigenvalue problem at
zero energy, we have a normalizable Majorana wave function
with zero energy localized near x = 0:

|φ0(x)〉 = e− Vz−�0
2α

x

⎛
⎜⎜⎝

iei�x/2

−iei�x/2

−ie−i�x/2

ie−i�x/2

⎞
⎟⎟⎠. (4)

In addition, another normalizable Majorana wave function
with zero energy localized near x = L is written as

|φL(x)〉 = e
Vz−�0

2α
(x−L)

⎛
⎜⎜⎝

ei�x/2

ei�x/2

e−i�x/2

e−i�x/2

⎞
⎟⎟⎠. (5)

We turn on the coupling between the two ends as the extension
of spin-orbital coupling

�ĥ = iδ(C†
0τzσyCL − C

†
LτzσyC0). (6)

This coupling is weak enough to be a first-order perturbation
so that the low-energy effective Hamiltonian can be written as
the coupling sandwiched by the two MZMs:

�H =
(〈φ0|�ĥ|φ0〉 〈φ0|�ĥ|φL〉

〈φL|�ĥ|φ0〉 〈φL|�ĥ|φL〉
)

∝4δ cos(�/2)

(
0 −i

i 0

)
. (7)

The energy spectrum �E ∝ ± cos(�/2) seems to have a 2π

periodicity. However, as the magnetic flux � varies from 0
to 4π , by following the adiabatic evolution of a hybridized
Majorana state with fixed parity [say cos(�/2)] the system
exhibits a 4π periodicity, which is the key idea of this paper.

If the wire is too short, the hybridization of the Majorana
bound states leads to large �-independent energy splitting.
To show this splitting, we start with the wave function |φL〉,
which is the exact solution of HBdG(x) for x > 0.

The tail of |φL〉 at x < 0 cannot be a part of the eigenstate
of HBdG(x) since the rapid change of the Zeeman splitting is
located at x = 0 as a domain wall. This nonvanishing part for
x < 0 is given by

HBdG|φL(x)〉 = −Vz0τzσz|φL(x)〉. (8)

This leads to the effective coupling between the two MZMs in
the wire

〈φ0|HBdG|φL〉 =
∫

dx〈φ0(x)|HBdG|φL(x)〉 (9)

= 4iVze
− Vz−�0

2α
L

∫ 0

−∞
e

Vz
2α

xdx. (10)

The Majorana hybridization is given by

�H ′ =
(〈φ0|HBdG|φ0〉 〈φ0|HBdG|φL〉

〈φL|HBdG|φ0〉 〈φL|HBdG|φL〉
)

∝ − 8αe− Vz−�0
2α

L

(
0 −i

i 0

)
. (11)

Hence, this energy splitting is � independent due to the finite-
size effect. Including the Majorana hybridization through the
junction, the total energy splitting is written as

�E± = ±d cos(�/2) ± D. (12)

Hence, the �-E relation exhibits a 4π periodicity independent
of MZM overlap. This low-energy theory can be further
written in the Majorana basis

H2M = i[d cos(�/2) + D]γlγr , (13)
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where γl, γr are Majorana operators at the two wire ends. We
will show that in Sec. IV the energy splitting (13) is the key,
simply describing the phase-energy relation in most cases of
the fractional Josephson junction. We note that the Josephson
periodicity here is 4π even when the two MZMs overlap
strongly in a short nanowire leading to large �-independent
energy splitting (D), but such a short wire is unsuitable for
topological gate operations since such overlapping MZMs are
not non-Abelian objects.

III. SIMULATION SETUP

The simulation setup to study the phase-energy relation
of the Josephson junction is based on the nanowire model
described by the approximate experimental parameters. We
start with the lattice Hamiltonian [obtained by discretizing
Eq. (1)] in the ring geometry as shown in Fig. 1:

ĤBdG

=
∑

1�j�L

{C†
j [(2t − μ)τzσ0 + �0τyσy + Vzτzσz]Cj ,

+ [
C

†
j+1(−tτzτ0+iατzσy )Cj+wC

†
Lτzσ0C1 + H.c.]},

(14)

where the Nambu spinor is given by Cj = (c↑j , c↓j ,

c
†
↑j , c

†
↓j )T . For the Josephson junction, the wire ends are

commonly separated by a thin insulator or metal. To simplify
the problem, we assume these ends directly couple through the
weak tunneling with strength w. For w = 0, the nanowire in
the open boundary condition may host MZMs at the two ends
if the system parameters are in the appropriate topological
regime (i.e., Vz large enough compared with μ and �). The
nonzero tunnel coupling w hybridizes these two Majorana
end modes through the junction, lifting their energies away
from zero because of Majorana splitting. To appropriately
describe the current experimental setup, the values of the
physical parameters [44] (unless specified otherwise) are
taken to be lattice constant a = 10 nm, hopping strength
t = 25 meV, spin-orbital coupling α = 2.5 meV, supercon-
ducting gap � = 0.9 meV, chemical potential μ = 4 meV,
tunneling of the two wire ends w = 0.1 meV. By comparing
with the low-energy effective Hamiltonian

HlowE(x) = − h̄2

2m∗ ∂2
x τzσ0 + iαl∂x + �0τyσy + Vzτzσz,

(15)

the values of the corresponding parameters are written as the
spin-orbital coupling αl = 0.5 eV Å and the effective mass
meff = 0.016me, where me is the electron rest mass. Although
we use these parameters for our numerical simulations, obvi-
ously the qualitative features of our results do not depend on
any specific parameter choice.

Now, we introduce the magnetic flux � in the unit of flux
quantum h/2e going through the middle of the nanowire as
shown in Fig. 1. The nonsuperconducting junction keeps the
phase difference between the two ends being � and then the
superconducting order parameter has an additional position-

dependent phase

�0C
†
j τyσyCj → �0C

†
j [cos(2jφ)τyσy + sin(2jφ)τxσy]Cj ,

(16)

where φ = �/2L indicates the phase difference between the
two nearest-neighbor sites. Furthermore, the nanowire Hamil-
ton is modified by the Peierls substitution in the presence of
the applied flux:

C
†
j+1(−tτzσ0 + iατzσy )Cj

→ C
†
j+1[(τz + τ0)e−iφ + (τz − τ0)eiφ]

−tσ0 + iασy

2
Cj .

(17)

With this construction, we numerically solve the eigenvalues
of the lattice Hamiltonian in the presence of the applied flux
to obtain the energy spectrum and the �-E relation for the
nanowire Josephson junction.

IV. ENERGY SPECTRUM AND �-E RELATION

We start with the Josephson junction of the original super-
conducting semiconductor nanowire lattice model and plot the
E-� relation to show the Majorana Josephson effect exhibit-
ing a 4π periodicity in �. The conditions of lattice model are
further extended to include short length wire, superconducting
gap suppression, and the presence of an Andreev bound state
to discuss the other mechanisms leading to a 4π periodicity
in the absence of MZMs. Following, we present these results
sequentially including each physical mechanism individually.

A. Long superconducting semiconductor nanowire

We consider the length of the nanowire to be long enough
[L = 400 lattice units (4 μm)] so that the Majorana hy-
bridization originating from the finite-size effect is strongly
suppressed. In the absence of Zeeman splitting (Vz = 0), the
nanowire in the trivial region does not possess MZMs at the
two ends. As the Zeeman splitting increases, the system passes
through the topological quantum phase transition (TQPT).
For this specific model, the TQPT point is located at Vz ≈√

�2 + μ2
2 = 4.1 meV. After the TQPT, the MZMs with zero

energy on the wire ends appear as shown in Fig. 2(a). The
presence of these boundary MZMs indicates that the system
is now a TSC with the bulk gap protecting MZMs with zero
energy.

As the magnetic flux � goes through the middle of the
ring, the two wire ends with the additional phases weakly
couple. The energy deviation of the lowest positive energy
(see the definition in the caption of Fig. 2) as a function of
Vz and � shows clear 2π periodicities in both the trivial and
topological regions and has changes at the TQPT point as
shown in Fig. 2(b). In the trivial region, the lowest-energy
level never reaches zero as the magnetic flux varies from 0
to 4π or touches the second energy level [Fig. 2(d)]. In this
regard, the BCS ground state adiabatically evolves back to the
original state after 2π . However, in the topological region,
at � = π, 3π the Majorana modes at the two ends com-
pletely decouple with the exact zero energy. Hence, after the
lowest positive energy quasiparticle, which starts at � = 0,
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FIG. 2. (a) The energy spectrum of the lattice Hamiltonian in
the open boundary condition showing that beyond the TQPT point
(Vz =

√
μ2 + �2

0 = 4.1 meV), two MZMs appear on the two wire
ends separately. (b) The energy deviation as a function of Vz and �

is defined by �E(�) ≡ E1(�) − 〈E1(�)〉, where E1 is the lowest
positive energy and 〈E1(�)〉 is the average of E1 from � = 0 to
4π . The patterns sharply change at the TQPT point. The dark blue
lines at � = π, 3π in the topological region indicate the energy level
crossings at zero energy. These crossings lead to the 4π periodicity in
�. (c) The angle θ = arctan ρ4π/ρ2π shows the ratio between 2π and
4π periodicities obtained by the Fourier transformation of the lowest
positive energy E1(�), where ρ4π and ρ2π are the strengths of 2π and
4π periodicities. The sharp jump at the TQPT indicates the transition
from a 2π periodicity to a 4π periodicity. (d) The �-E relation at
Vz = 3 meV in the trivial region shows a 2π periodicity. (e) The
�-E relation (green) at Vz = 6 meV in the trivial region shows 4π

periodicity and is consistent with the energy splitting d cos(�/2) in
the theory (red, d is obtained by fitting).

passes through zero energy at � = π as shown in Fig. 2(e),
it possesses negative energy at � = 2π and then evolves
back to the original quasiparticle at � = 4π . Furthermore, the
energy dispersion can be described by �E± = ±d cos(�/2)
in Eq. (12) with D = 0 due to the suppression of the finite-size
effect in the long wire.

Thus, in the topological region, the BCS ground state with
fixed fermion parity has a 4π periodicity. We further Fourier
analyze the lowest energy with the fixed parity as shown in
Fig. 2(c). In the trivial regime, the 2π periodicity dominates
with a small mixing of the 4π oscillation, whereas only 4π

periodicity appears in the topological region. The 2π and 4π

periodicities can clearly distinguish the trivial and topological
regions in this perfect scenario of a long nanowire, as is al-
ready known. We show these results for our specific situations
so that our findings below including realistic physical effects
not included in the idealized model can be distinguished from
this perfect scenario.
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FIG. 3. (a) The energy spectrum for the short wire (L = 100)
shows that the Majorana bound states strongly hybridize with oscilla-
tions in the topological region. (b) The energy deviation as a function
of Vz and � shows that the 4π periodicity in � mostly dominates in
the trivial and topological regions. (c) The ratio (tan θ ) of the 4π and
2π periodicities shows in the trivial region the mixture of the 2π and
4π periodicities and as Vz > 4.26 meV the 2π periodicity vanishes
in the trivial regime. (d) The �-E relation (green) at Vz = 3.3 meV
in the trivial region can be described by the effective two-Majorana
theory (12) with strong �-independent Majorana hybridization. (e)
Vz = 6.6 meV corresponding to zero energy leads to the lowest
energy proportional to cos(�/2). (f) For Vz = 7.1 meV, Majorana
end modes strongly hybridize through the wire so that the lowest
energy (±E1) shifts away from zero with ± cos(�/2) oscillation.
The red lines in panels (d)–(f) presenting the Majorana effective
theory [D, d in Eq. (12) are chosen by fitting] are consistent with
the simulation (green).

B. Short wires

We consider the experimental setup away from the perfect
scenario above. For a short wire, the Majorana modes at
the wire ends can easily hybridize away from zero energy
due to the wave-function overlap through the wire. In the
topological region, the hybridization energy oscillates as the
Zeeman splitting (Vz) is increased [42,43,43,45,46]. As shown
in Fig. 3(a), the wire spectrum in the open boundary condition
shows the oscillation amplitude gradually is increased as
Vz increases beyond the TQPT point. This arises from an
effective increase of the superconducting coherence length
because increasing Vz reduces the SC gap energy.

In the entire system with the additional magnetic flux,
the lowest positive energy fluctuation [Fig. 3(b)] and the
corresponding Fourier analysis [Fig. 3(c)] manifest clear 4π

periodicity in the topological region. In the trivial region,
the 2π periodicity of the energy oscillation is seen mixed
with the 4π periodicity. Much of the trivial regime is in fact
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dominated by 4π oscillation. In Fig. 3(d) at Vz = 3.3 meV in
the trivial region, even in the absence of the MZMs the lowest
energy can be faithfully described by Eq. (12), which is the
model based on the hybridized MZMs. The clear emergence
of the 4π periodicity in the trivial short wire is not surprising
since in the literature [47] it has been shown that for a
short conventional superconductor a 4π periodicity may be
observed. Therefore, the observation of the 4π periodicity is
not a conclusive evidence for topological superconductivity.
It may very well be that one is dealing with a rather short
trivial wire with no MZMs whose length is smaller than the
SC coherence length as shown in Fig. 3.

In the topological region, when the �-independent Ma-
jorana hybridization vanishes at few specific Vz values, the
oscillation of the lowest energy as a function of � [Fig. 3(e)] is
identical to the corresponding situation in the long wire limit
[Fig. 2(e)]. The zero-energy modes appear at � = π, 3π .
On the other hand, due to the short length of the wire, the
Majorana hybridization significantly affects the energy spec-
trum. With the hybridization energy D as a �-independent
constant, the lowest energy in the simulation is in agreement
with Eq. (12) as shown in Fig. 3(f). That is, even when the
MZMs are strongly hybridized, the junction still exhibits a 4π

periodicity in the short wire. Although this finding seems un-
expected, it is related to the coupling of the hybridized MZMs
through the junction being proportional to ± cos(�/2).

C. Superconducting gap suppression

Since the presence of the magnetic field might suppress
the superconducting gap (e.g., orbital effect) in the nanowire,
we consider a model of the superconducting order parameter
obeying exponential decay in the Zeeman splitting (the precise
form of the decay function does not significantly affect the
�-E relation):

� = �0e
−Vz/λ. (18)

We intentionally choose λ = 2 meV so that the superconduct-
ing gap almost vanishes Vz > 4.1 meV since Vz = 4.1 meV
was the TQPT in the previous gapped superconducting sys-
tems. The spectrum of the nanowire in the open boundary
condition [Fig. 4(a)] shows that once the bulk energy gap
closes near the previous TQPT point (Vz = 4.1 meV), the bulk
gap does not reopen as Vz is increased (� → 0). Further-
more, the Majorana bound states, which hybridize, become
a quasiparticle or a quasihole state with energy oscillation.
For a small gap, in both the trivial and topological regions
the system can be treated as an effective normal metal (par-
ticularly, at the finite experimental temperatures). It is not
therefore surprising that as shown in Figs. 4(b) and 4(c) the
4π periodicity behavior stems from the normal metal [37–39].
It is worth noting that Fig. 4(c) shows that the 2π periodicity
completely vanishes after the TQPT point in this suppressed
gap “topological” regime.

In the trivial region before the bulk gap closing, the
�-E relation [Fig. 4(d)] can still be described by Eq. (12).
Similarly, the 4π oscillation and the constant hybridization
energy in Eq. (12) capture the �-E relation in the topological
regions as shown in Figs. 4(e) and 4(f). As the magnetic
field strongly suppresses the gap converting the system to an
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FIG. 4. (a) The energy spectrum in the presence of the suppres-
sion of the superconducting gap (18) shows the bulk gap closing
at Vz > 4.1 meV, which is the TQPT point for the two previous
cases. Due to the weak superconductivity, after the bulk gap closes,
the lowest-energy states are not localized MZMs. (b) The energy
deviation shows the 4π periodicity domination in the trivial and
topological regions. (c) The ratio of the 4π and 2π periodicities
shows the 4π periodicity only after the bulk gap closing and the
mixture of 2π and 4π periodicities before the bulk gap closing.
Due to the small superconductor gap, 4π periodicity still dominates
in the trivial region. (d)–(f) The �-E relations (green) at Vz =
3.3, 4.4, 7.35 meV, respectively, can be described by the effective
two-Majorana model [red, D, d in Eq. (12) are chosen by fitting].

effective normal metal, the 4π periodicity of the junction is
expected to occur since this is the ordinary Aharonov-Bohm
oscillation in an ordinary metal.

D. Quantum dot hosting an ABS near the wire end

It is now well known [44,45] that many putative properties
of MZMs in nanowires could be artificially simulated by ac-
cidental ABSs in nanowires which happen to be close to mid-
gap in energy. This is true for the zero-bias conductance peak
[44] as well as the apparent MZM oscillations as a function of
Vz or L [45]. Each trivial ABS may be thought of as two spa-
tially closely located MZMs in a varying background of chem-
ical potential (caused, for example, by disorder or a quantum
dot in the system), and if the experimental probe (e.g., the
tunneling lead) couples strongly to only one of these MZMs,
then the system response may mimic that of just an isolated
MZM. We now investigate the Josephson effect in our system
by assuming the existence of a quantum-dot-induced ABS.

It is likely that the presence of the ABS alters the �-E
relation in the trivial phase. This motivates us to include a low-
energy ABS in the Josephson junction setup to see the features
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FIG. 5. (a) Pictorially illustrates the additional potential dip at
the wire end as the quantum dot leading to an ABS in the system.
In the absence of the superconductivity, the quantum dot can host
a low-energy ABS. (b) The energy spectrum (L = 400) with the
quantum dot indicates that the low-energy ABS appears for Vz =
1.8–2.4 meV. (c) The energy deviation �E shows 2π periodicity
in the trivial region although it might not be clear as Vz moves
away from the TQPT point since the region is all green. (d) The
ratio (tan θ ) of the 4π and 2π periodicities indicates that the 2π

periodicity still dominates in the presence of the low-energy ABS
in the trivial region. (e) The �-E relation at Vz = 2.2 meV with the
low-energy ABS exhibits a 2π periodicity.

of the �-E relation by adding a quantum dot in one wire
end. As illustrated in Fig. 5(a), an additional potential well,
induced by a quantum dot (or other extrinsic mechanism), is
included in the lattice Hamiltonian (14):

Ĥwell =
∑

1�j�D

C
†
j cos(3πj/2LD )τzσ0Cj . (19)

For the simulation, the length of the quantum dot LD = 30 is
used and the superconducting order parameter � is removed
in this region (i.e., the dot is assumed to be normal although
this is not expected to be important for our results). The
energy spectrum as a function of Vz [Fig. 5(b)] shows the
zero-energy sticking of the ABS at the quantum dot as Vz

varies from 1.8 to 2.4 meV. Since the TQPT point is located
at Vz = 4.1 meV, the low-energy ABS is in the trivial regime
and does not coexist with the MZMs. As shown in Figs. 5(c)
and 5(d), even in the presence of the ABS, the 2π periodicity
of the �-E relation still dominates in the topologically trivial
region. By comparing with the trivial regime without the ABS
[Fig. 2(c)], a small portion of 4π periodicity arises in the
presence of the ABS in addition to the dominant 2π trivial
oscillations. Nevertheless, the TQPT is still the main transition
point between 2π and 4π periodicities.

V. INHOMOGENEOUS POTENTIALS

In the practical experimental setup, the homogeneous back-
ground potential as used so far in our simulations cannot be
perfectly under control so that the inhomogeneous potential
might lead to several disconnected topological regions in the
nanowire with different adjacent spatial regimes separating
into effective trivial and topological regimes with multiple
nearby MZMs according to their local chemical potentials and
superconducting gap values. Each topological region can host
localized Majorana modes at its two ends and, in principle,
depending on the details of the spatial inhomogeneity, there
could be many MZMs located in the nanowire, not just two at
the two physical boundaries at the wire ends. In the following,
to be specific, we consider several inhomogeneous potential
distributions, that have two disconnected topological regions
hosting four Majorana modes (i.e., two MZMs in each spatial
topological region), and then further study the �-E relations
of the Josephson effect in the presence of these four MZMs.

A. Step-function potential

We first consider the simplest inhomogeneous distribution
of the chemical potential by adding just one constant potential
in the middle region of the wire. For the simulation model, the
constant potential well in the middle wire

Ĥstep = −
∑

(L−lμ )/2<j�(L+lμ )/2

C
†
j�μ0τzσ0Cj (20)

is added in the lattice Hamiltonian (14). The reason for adding
the negative potential (positive chemical potential) is that
the two sides of the wire enter to the topological region
earlier (i.e., lower Vz) than the middle as Vz is increased. We
specifically choose the constant potential �μ0 = 2 meV and
its region length lμ = 200 while the wire length L = 400.
As the Zeeman splitting Vz is increased, the wire regions
on the two sides without the additional potential enter the
topological phase after the first TQPT point Vz1 = 4.1 meV.
Since the middle of the wire is trivial, four localized MZMs
appear separately at the respective wire ends and the po-
tential jump points as illustrated in Fig. 6(a). Effectively,
the single wire is now divided into three spatial regimes:
two topological regimes with MZMs and one trivial regime
with higher chemical potential in the middle. As Vz keeps
increasing, the middle region eventually becomes topological
at Vz2 =

√
0.92 + (2 + 4)2 = 6.07 meV at the second TQPT

point. As the entire wire is now topological for V > Vz2, the
two internal Majorana modes strongly hybridize away from
zero energy and at the same time two MZMs survive on the
two wire ends since they are spatially well separated from
each other. The spectrum as a function of Vz [Figs. 6(b)
and 6(c)] shows the bulk SC gap closing at Vz1, Vz2, four
Majorana modes with small energy splitting between the two
gap closings, and two Majorana modes with small energy
oscillation for Vz > Vz2. The energy splitting and oscillation
involve the hybridization variations of the Majorana modes as
Vz is increased [43].

By tuning the Zeeman splitting Vz, the nanowire can host
zero, four, and two Majorana modes, respectively, as three dis-
tinct phases. The trivial and topological regions hosting zero
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FIG. 6. (a) The potential distribution shows that an additional
constant chemical potential �μ0 is added in the middle of the wire
with lμ = 200. (b) The energy spectrum indicates that there are
two TQPT points (Vz1 = 4.1 meV and Vz2 = 6.07 meV). (c) The
spectrum in the small energy region indicates the presence of four
Majorana modes (γl, λl, λr , γr ) with energies close to zero for
Vz1 < Vz < Vz2. Their locations are illustrated in (a). As Vz > Vz2,
only two MZMs (γl, γr ) appear at the two wire ends, respectively. (e),
(d) The �-E relations of the lattice model (green) for the four lowest-
energy levels are in agreement with the effective four-Majorana
model [red, d, f, g in Eq. (24) are chosen by fitting]. The 4π

periodicity domination persists in the entire four-Majorana region.

and two Majorana modes, respectively, have been extensively
discussed in Sec. IV A. Since we have discussed above, our
focus now is on the low-energy physics of the Josephson effect
for the wire hosting four Majorana modes. Before performing
the numerical simulation for the lattice model, we construct
the low-energy Hamiltonian of the four-Majorana model to
understand the Josephson junction physics

H4M = i[d cos(�/2) + D]γlγr + igγlλl + igγrλr

+ if λlλr + ihγrλl + ihγlλr , (21)

where the Majorana operators (γl, γr , λl, λr ) represent two
Majoranas located on the two wire ends and two Majoranas
located near the potential jump points, respectively, as illus-
trated in Fig. 6(a). The first term in Eq. (21) stems from both
the 4π energy oscillation of the two Majorana end modes and
their finite-size effect as described in Eq. (13). The second
and third terms describe the two similar couplings of the
two Majorana modes in the same potential wells [on the left
and right sides in Fig. 6(a), respectively] and f is the tunnel
coupling strength for the two Majorana modes through the
middle of the wire. The last two terms are the coupling of one
Majorana end mode on the right/left side and one Majorana
mode near the potential jump on the left/right side through
the junction. Although h might be � dependent due to the
junction tunneling, in our simple model a � independent h is

assumed. If the flux dependence of the coupling strength is
known, it is straightforward to include it in the theory.

By analytically solving the eigenvalues of the Hamiltonian,
the low-energy spectrum of the many-body BCS wave func-
tion is given by

E±
BCS1 = ±

√
[d cos(�/2) + D + f ]2 + 4g2,

E±
BCS2 = ±

√
[d cos(�/2) + D − f ]2 + 4h2. (22)

These many-body energies lead to the expression of the
quasiparticle and quasihole energies

E±
1 = ± E+

BCS1 ∓ E+
BCS2,

E±
2 = ± E+

BCS1 ± E+
BCS2. (23)

For our specific model of the numerical simulation, D ≈ 0
due to the long wire length L = 400 for all of the following
cases. The coupling strength h is neglected since it is weak-
ened by the long length of the potential well [(L − lμ)/2 =
100] in our model and the coupling through the junction
(it will be restored for large lμ later). The explicit energy
expression of quasiparticle and quasihole is written as

E±
1 = ±

√
[d cos(�/2) + f ]2 + 4g2 ∓ |d cos(�/2) − f |,

E±
2 = ±

√
[d cos(�/2) + f ]2 + 4g2 ± |d cos(�/2) − f |.

(24)

The spectrum of Eq. (24) shows that nonzero d, f, and
g destroy the 2π periodicity [E±

1 (� + 2π ) �= E±
1 (�) and

E±
2 (� + 2π ) �= E±

2 (�)] and lead to a 4π periodicity. This is a
key feature that effective 4π oscillations may arise even when
the whole wire encloses multiple MZMs.

Now returning to the numerical simulation of the �-E
relation for the lattice model, since there are four low-energy
Majorana modes in this region and we include four lowest-
energy bands in the panels of the �-E relation as shown in
Figs. 6(d) and 6(e); the �-E relation exhibits a 4π periodicity
in the entire region of the four Majorana modes. Furthermore,
the energy spectrum from the lattice model as a function of
� in the four-MZM region is consistent with the low-energy
model of Eq. (24). We conclude that the transition point
between 2π and 4π periodicities occurs at the first TQPT
point Vz1, and for Vz > Vz1, the system manifests only 4π

oscillations in spite of the presence of four MZMs in the wire.
The length lμ of the additional constant potential region

can go to two limits (lμ → 0, L). First, as lμ → 0, only the
coupling of the two Majorana end modes through the junction
and the coupling of the two Majorana modes at the potential
jumps dominate so that the effective Hamiltonian is of the
simple form

H4M =id cos(�/2)γlγr + if λlλr . (25)

The coupling strength f grows as lμ becomes shorter. When
lμ = 0, the two Majorana modes (λl, λr ) in the middle of
the wire move far away from zero energy and the nanowire
hosts only two MZMs (γl, γr ) on the ends. For nonzero lμ,
the quasiparticle and quasihole energies as a function of �

become similar to Fig. 6(e) [E±
1 = ±d cos(�/2), E±

2 = ±f ]
and the 4π periodicity appears beyond Vz1 consistent with ex-
pectations (since the system is now simply one homogeneous
nanowire).
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FIG. 7. (a) The energy spectrum for the long length (lμ = 350)
of the constant chemical potential plateau (�μ0) indicates that the
bulk gap does not close at Vz = Vz1 due to the short lengths of the
topological regions. (b)–(d) The �-E relations in the lattice model
(14) (green) are in agreement with the effective low-energy theory
[red, d, g, h in Eq. (26) are obtained by fitting]. (d) The �-E relation
in the lattice model (green) deviates from the effective low-energy
theory (26) (red) as Vz is close to Vz2. That is, the 2π periodicity
gradually changes to the 4π periodicity as Vz varies from Vz1 to Vz2.

Second, as lμ → L, f vanishes and the coupling h through
the junction between one Majorana end mode and one Majo-
rana mode near one potential jump on the other side cannot
be neglected. These two factors are the key leading to the
2π periodicity of the BCS wave function with fixed fermion
parity as shown below. The energy spectrum of quasiparticle
and quasihole has the following expression:

E±
1 = ±

√
d2 cos2(�/2) + 4g2 ±

√
d2 cos2(�/2) + 4h2,

E±
2 = ±

√
d2 cos2(�/2) + 4g2 ∓

√
d2 cos2(�/2) + 4h2.

(26)

The absence of f in the energies implies E±
1 (� + 2π ) =

E±
1 (�) and E±

2 (� + 2π ) = E±
2 (�). Furthermore, the pres-

ence of g, h avoids the energy level crossing at E±
1 = E∓

2
as � = π, 3π , and without any energy level crossing the
Josephson junction does not possess the 4π periodicity of the
BCS wave function.

We consider the specific case lμ = 350 (cf. L = 400) for
the numerical simulation. The energy spectrum of the wire
in the open boundary condition shows that the bulk gap
closing does not occur at V1z due to the short length of the
topological regions [(L − lμ)/2 = 25] as shown in Fig. 7(a).
In the Vz region between Vz1 and Vz2, the four energy bands
are close to zero energy. We include these four energy bands to
calculate the �-E relations of the numerical model as shown
in Figs. 7(b)–7(d). As Vz is close to Vz1, the quasiparticle
and quasihole energies (26) are identical to the �-E relation
from the numerical simulation [Fig. 7(b)], which exhibits a 2π

periodicity. On the other hand, as Vz is close to Vz2, the energy
spectrum [Fig. 7(d)] from the numerical simulation deviates

γl λrλl γr

Δμ(x)

meV meV

meV

FIG. 8. (a) Illustrates a smooth chemical potential distribution
�μ(x ) as sin x in the entire wire. (b) The energy spectrum shows
the bulk energy level closing at Vz = Vz2. Similarly, four Majorana
modes appear (γl, λl, λr , γr ) as Vz1 < Vz < Vz2 as illustrated in (a).
(c) The �-E relation at Vz ∼ Vz1 exhibits a 2π periodicity since the
two lowest-energy levels are disconnected as shown in the inset.
(d) As Vz moves away from Vz1, the �-E relation exhibits a 4π

periodicity due to the energy level crossings at � = π, 3π as shown
in the inset. The �-E relations (c), (d) in the lattice model (green)
are consistent with the low-energy Majorana model [red, d, h, f

in Eq. (26) are chosen by fitting]. (e) The �-E relation shows a
4π periodicity as Vz is close to Vz2; the �-E relation in the lattice
model (green) is almost consistent with the two independent energy
splittings in the effective theory [red, d, f in Eq. (25) are obtained
by fitting].

away from the low-energy approximation (26) exhibiting 2π

periodicity. In other words, the portion of the 4π periodicity
in the �-E gradually increases as Vz increases toward Vz2.

In summary, the length of the potential plateau lμ and
the Zeeman splitting Vz are the main parameters to tune the
periodicity of the �-E relation. As Vz is fixed in the region
between Vz1 and Vz2 and the length lμ of the high potential
region is increased, the �-E relation gradually changes from
a 4π periodicity to a 2π periodicity. For large lμ, as Vz varies
from Vz1 to Vz2, the periodicity gradually goes from 2π to 4π ,
too.

B. Sine function potential in all regions

Next, we consider a smooth trigonometric (“sine”) inho-
mogeneous chemical potential distribution in the entire wire
by adding [48]

Ĥsin = −
∑

1�j�L

V0C
†
j sin

(
πj

L

)
τzσ0Cj (27)

to the lattice Hamiltonian (14) as illustrated in Fig. 8(a). For
the lattice model we choose V0 = 2 meV, which is identical
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FIG. 9. (a) Illustrates an additional sine-shape chemical potential
�μ(x ) near one wire end and pictorial locations of the four Majorana
modes (λl, γl, γr , λr ). (b) The energy spectrum shows that two
MZMs stay at zero energy and two other Majorana modes exhibit the
oscillation of the energy splitting as Vz is increased from Vz1, where
Vz1 is the only TQPT point. (c) The �-E relation of the lattice model
(green) is in agreement with the low-energy model [red, d, g, f in
Eq. (30) are chosen by fitting] and exhibits a 4π periodicity.

to the constant value of the potential well in the previous
case. There are still two distinct TQPT points (Vz = Vz1, Vz2).
The spectrum of the wire [Fig. 8(b)] in the open boundary
condition shows that two MZMs appear for Vz > Vz2 and four
energy levels close to zero are present between Vz1 and Vz2. It
is not surprising that the �-E relation of the Josephson effect
can still be captured by the four-Majorana effective Hamilto-
nian (21). First, when Vz is near Vz1 as shown in Fig. 8(c),
the �-E relation can be faithfully described by Eq. (26) with
nonvanishing g and h. Furthermore, the inset of Fig. 8(c)
indicates that the two positive energy levels are disconnected.
Therefore, the �-E relation exhibits a 2π periodicity (by
assuming the absence of Landau-Zener tunneling). As Vz

increases toward Vz2, the lengths of the topological regions
on the two sides become longer to weaken the coupling
h between one Majorana end mode and another Majorana
near the potential jump on the other side. With vanishing h,
Eq. (26) is in agreement with the �-E relation from the lattice
model simulation. The �-E relation exhibits a 4π periodicity
since the continuous evolution of the two lowest positive
energy levels switch at the energy level crossing [the inset of
Fig. 8(d)]. When Vz is very close to Vz2, the two topological
regions are extended and the trivial region the middle of the
wire shrinks significantly. The coupling f between λl and λr

grows strongly and the coupling g can be neglected due to
the long length of the two topological regions. As shown in
Fig. 8(e), the �-E relation can be simply captured by the two
independent energy splittings d cos(�/2) and f in Eq. (25).

C. Sine function potential near one wire end

After discussing the smooth potential in the entire wire, we
consider a smooth potential variation locally near one end of
the wire. As illustrated in Fig. 9(a), the additional chemical

potential Hamiltonian

Ĥsin = −
∑

1�j�le

V0C
†
j sin

(
πj

le

)
τzσ0Cj (28)

is added to the lattice Hamiltonian (14). In our model, we
choose le = 50 and plot the energy spectrum in the open
boundary condition in Fig. 9(a). Only one TQPT point is
located at Vz = Vz1 = 4.1 meV. Beyond the TQPT point, two
low-energy modes appear (λl, λr ) near the middle of the
potential well, and the energy splitting oscillates and moves
away from zero energy as Vz is increased, whereas two MZMs
(γl, γr ) are present on the two wire ends separately. We note
that for Vz > Vz1, the energies of the Majorana modes near
the middle potential well oscillate and never touch the energy
level of the end MZMs. Similarly, the low-energy physics can
be captured by this effective four-Majorana Hamiltonian

H end
4M = id cos(�/2)γlγr + igγlλl + if λlλr , (29)

where g is the coupling of the Majorana modes
on the left side and f is the coupling of the Majorana
modes in the middle of the potential well. By solving the
algebra of the effective Hamiltonian, the quasiparticle and
quasihole energies are given by

E±
1 = ±

√
[d cos(�/2) + f ]2 + 4g2

∓
√

[d cos(�/2) − f ]2 + 4g2,

E±
2 = ±

√
[d cos(�/2) + f ]2 + 4g2

±
√

[d cos(�/2) − f ]2 + 4g2. (30)

These effective low energies are consistent with the �-E rela-
tion computed in the lattice model (14) as shown in Fig. 9(c).
Furthermore, the energies exhibit 2π periodicity with the re-
lations E±

1 (� + 2π ) = E∓
1 (�) and E±

2 (� + 2π ) = E±
2 (�).

The energy level crossing E±
1 = 0 always occurs at � =

π, 3π . Hence, the entire system always exhibits a 4π peri-
odicity for this local varying potential.

VI. A LONG TRIVIAL SUPERCONDUCTOR
IN THE MIDDLE OF THE WIRE

In the experimental setup [33], the typical structure of
the Josephson device commonly consists of a long trivial
(conventional) superconductor in the middle of the wire and
the topological superconductors on the two sides of the trivial
superconductor; the ends of the two topological supercon-
ductors form the junction. Consider the potential distribution
exhibiting a plateau in the middle of the wire as shown in
Fig. 6(a). As Vz1 < V < Vz2, the nontrivial superconducting
regions appear on the two sides of the wire and the trivial
region is in the middle of the wire. Therefore, the inhomo-
geneous potential distribution can also faithfully capture the
Josephson physics of this long trivial superconductor case.
Using the effective four-Majorana model (21), we analyze
the periodicities of the Josephson effect in this scenario
for the different lengths of the topological regions. We note
that the two Majorana coupling strengths D, f can be ne-
glected due to the long length of the trivial superconductor in
the middle of the wire. (a) When the lengths of the topological
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superconductors on the two sides are too short, the finite-size
effect leads to the strong Majorana couplings (g, h). That is,
in the limit of lμ → L, the spectrum of the quasiparticle and
quasihole in Eq. (26) exhibits a 2π periodicity as � varies.
(b) When the lengths of the side topological superconductor
regions are long enough, these Majorana hybridizations g, h

can be neglected. The low-energy Hamiltonian is given by
Eq. (25) without if λlλr . Therefore, the E-� relation exhibits
a 4π periodicity with additional two isolated Majorana zero
modes in the ends of the long trivial superconductors.

Section IV shows that in the absence of the MZMs, the
short length of the wire and the suppression of the supercon-
ductivity can lead a 4π periodicity of the Josephson effect.
The long trivial superconductor can exclude some of the trivial
4π -periodicity cases stemming from the short length of the
wire. On the other hand, the suppression of the supercon-
ductivity in this case cannot be ruled out since the E-� still
exhibits a 4π periodicity when the superconductivity in the
entire system is suppressed. As the entire system becomes a
normal metal, the previous trivial and topological regions do
not affect the 4π periodicity of the E-� relation anymore.

VII. CONCLUSION

The presence of isolated MZMs, which possess zero en-
ergy, is not the only condition leading to the fractional Joseph-
son effect with 4π periodicity. When the MZMs are destroyed
by the hybridization, a short length superconducting wire and
superconducting gap suppression separately may give rise
to 4π periodicity. That is, under some circumstances, the
4π periodicity may dominate the E-� relation even when
the system is not inherently topological. In the topological
region, even if the Majorana end modes strongly hybridize
due to the finite-size effect, the Josephson effect still exhibits
a 4π periodicity. With this strong finite-size effect, the energy
hybridization never reaches zero as � varies and, strictly
speaking, there is no zero mode in the system. Although
the experimental setup with the long trivial superconductor
can exclude the finite-size effect, the other trivial conditions
can also lead to the trivial 4π periodicity. Our work shows
that depending on various realistic physical effects (e.g.,
wire length, gap suppression, Andreev bound states, chemical
potential variations), the system may manifest 2π or 4π

oscillations in the Josephson effect or even a combination of
both without clearly establishing any underlying topological
physics (or rather emphasizing only some aspects of the topo-
logical physics). Therefore, it is difficult to associate the mere
observation of approximate 4π oscillations with the presence
of isolated MZMs in the system [33]. Only in the idealized
situation of a very long wire with no chemical potential
fluctuations or gap suppression one can identify the presence
of 4π (2π ) oscillations in the Josephson effect as being direct
evidence for topological (trivial) superconductivity.

For the inhomogeneous potentials, we first discuss the
appearance of an ABS in a quantum dot at the wire end. In the
trivial region, the presence of the ABS manifests only a 2π

periodicity. Second, we consider the potential distributions,
creating two separate topological regions and a trivial region
in the middle of the nanowire. The four-Majorana model
we develop can accurately describe the low-energy physics

of the Josephson effect. When the two topological regions
near the wire ends are long, there is a clear transition point
between 2π and 4π periodicities, which is the TQPT point.
When the lengths of the two topological regions are short, the
transition of the periodicity from 2π to 4π is a crossover, as
Vz is increased from zero. That is, in the presence of the four
Majorana modes in the nanowire, the periodicity can be either
4π or 2π . The 2π periodicity stems from the overlapping of
the two nearby Majorana modes close to zero energy near the
wire end.

Our work establishes that trivial Andreev bound states,
which happen to be accidentally near zero energy [44], could
generically mimic the appearance of a fractional Josephson
effect in nanowires similar to that predicted to arise from
Majorana zero modes [16,20]. Thus, the appearance of a
fractional Josephson effect in nanowires cannot be construed
to be a smoking gun evidence for the existence of MZMs as
has been claimed before. This is the main message of our
work. Of course, the importance of near-zero-energy Andreev
bound states in the interpretation of Majorana nanowire ex-
periments is well established by now, but most of the work in
this context has focused on the zero-bias conductance physics
where it was shown [44] that the near-zero-energy Andreev
bound states can produce zero-bias conductance peaks very
similar to that predicted for Majorana zero modes. What we
show in this work is that a similar problem occurs also for
the fractional Josephson effect where the near-zero-energy
trivial Andreev bound states could give rise to a fractional
Josephson effect just as the Majorana zero modes do. Thus,
the observation of a fractional Josephson effect is a neces-
sary condition for the existence of Majorana zero modes,
but it is by no means a sufficient condition. We mention in
this context that the fact that nontopological systems could
produce fractional Josephson effect signals has earlier been
pointed out in the literature [47,49], but not as arising from
near-zero-energy Andreev bound states. The earlier examples
of fractional Josephson effect in nontopological junctions
were all discussed in fine-tuned situations of short wires
and/or purely accidental occurrence of zero-energy impurity
states. In fact, the fractional ac Josephson effect arising from
Landau-Zener tunneling induced nonequilibrium effect was
even observed in an experiment some years ago [50]. What
is different in our work is not the occurrence of the fractional
Josephson effect in a nontopological superconductor, but the
generic occurrence of the fractional Josephson effect in spin-
orbit-coupled nanowires in the nontopological regime where
it precisely mimics the behavior of the topological Majorana
zero modes.

The main goal of this work is to determine the periodicity
of the phase-energy (�-E) relation in currently studied Majo-
rana nanowires. Our focus has been only on the weak coupling
of the junction. On the other hand, the current in the Josephson
junction is an essential observable to probe the periodicity of
the magnetic flux. For the homogeneous potentials, the two-
Majorana model (12) directly shows the Josephson current
to be proportional to cos(�/2) as long as the temperature is
much smaller than the second lowest-energy level. However,
for the inhomogeneous potentials, with multiple low-energy
levels in the four-Majorana model (21), the Josephson current
has to be derived based on the Fermi occupation numbers
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at finite temperature [20]. This is a complicated numerical
problem, which is better done in the context of specific
experimental samples since all the details of various energy
scales (e.g., temperature, SC gap, tunnel couplings, spin-orbit
coupling, ABS energies) become crucial in the calculation of
the Josephson current. In this work, we have focused on the
universal physics of the energy-flux relationship in the Joseph-
son effect, and have shown that even this universal physics
is strongly affected by many realistic physical mechanisms,
which destroy the perceived simplicity of the 2π versus 4π

Josephson oscillations necessarily reflecting the underlying
absence or presence of isolated non-Abelian Majorana zero
modes. Our work establishes that, similar to the zero-bias
tunneling conductance studies [44,45], the Josephson effect,
by itself, might be incapable of providing decisive information
about the topological or trivial nature of the nanowire ground

states because of many complicating physical effects invari-
ably occurring in realistic systems. This should be a word
of caution for future (or past) experimental claims on this
important problem.

Note added. Recently, a paper appeared [51] containing
some aspects of our results.
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