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Topological phases of matter that depend for their existence on interactions are fundamentally interesting and
potentially useful as platforms for future quantum computers. Despite the multitude of theoretical proposals,
the only interaction-enabled topological phase experimentally observed is the fractional quantum Hall liquid. To
help identify other systems that can give rise to such phases, we present in this work a detailed study of the effect
of interactions on Majorana zero modes bound to vortices in a superconducting surface of a three-dimensional
topological insulator. This system is of interest because, as was recently pointed out, it can be tuned into the
regime of strong interactions. We start with a zero-dimensional system suggesting an experimental realization of
the interaction-induced Zg ground-state periodicity previously discussed by Fidkowski and Kitaev [Phys. Rev. B
81, 134509 (2010); 83,075103 (2011)] . We argue that the periodicity is experimentally observable using a tunnel
probe. We then focus on interaction-enabled crystalline topological phases that can be built with the Majoranas
in a vortex lattice in higher dimensions. In one dimension, we identify an interesting exactly solvable model
which is related to a previously discussed one that exhibits an interaction-enabled topological phase. We study
these models using analytical techniques, exact numerical diagonalization, and density matrix renormalization
group. Our results confirm the existence of the interaction-enabled topological phase and clarify the nature of
the quantum phase transition that leads to it. We finish with a discussion of models in dimensions 2 and 3 that
produce similar interaction-enabled topological phases.
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I. INTRODUCTION

Noninteracting electron systems have recently provided a
new playground for experimental and theoretical research:
topological insulators (TIs) and topological superconduc-
tors (TSCs) [1-3]. The hallmarks of these materials are
symmetry-protected gapless edge modes. Both fundamental
and crystalline symmetries can play a role in protecting these
states [4—7]. The TIs and TSCs are extensively studied both on
their own and as building blocks in engineered exotic quantum
states [8—15].

The Majorana bound state is an example of such an
edge state, which can emerge both at the edge of a one-
dimensional (1D) TSC and in the vortex of two-dimensional
(2D) TSC, which may be either intrinsic or realized at the
interface between a three-dimensional (3D) TI and an ordinary
superconductor [8—11,16]. Such Majorana bound states occur
at zero energy and are thus often called Majorana zero
modes (MZMs). The effort to detect such MZMs has been
focused on the zero-bias conductance peak [17-19], indicative
of the density of states at zero energy, which is, however,
not a definitive proof of a Majorana bound state [20]. The
physics of the MZMs still to be observed is much richer:
most importantly, upon adiabatic exchange they behave as
non-Abelian anyons and provide a pathway to (nonuniversal)
topological quantum computation [21].

It is known that the electron-electron interactions enrich the
palette of topological states. The first discovered topological
material with inherently strong electron-electron interactions
is the fractional quantum Hall effect [22,23]. For certain
filling fractions, the emergent quasiparticles are predicted to
be Majoranas, or even more exotic Fibonacci anyons, that may
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provide a platform for universal quantum computation [21,24].
These systems require extreme conditions to be probed and
used: very clean samples, low temperature, and high magnetic
fields. One way to avoid these complications is to engineer
the Majorana bound states [25,26] and use the interactions
between them to construct universal quantum computer.
Majorana surface codes realizing exotic non-Abelian
quasiparticles allowing for universal quantum computation
have been theoretically proposed [27].

For the experimental realization of these proposals, there
are several preliminary steps to be made. Although there
have been indications of the Majorana bound states in the
conductance measurements in several systems, the possibility
to induce interactions between them still remains unconfirmed.
In this paper, we endeavor to fill this gap from the theory side
by suggesting realistic setups that can be used to probe the
interactions between Majoranas.

As a basis we use a system proposed recently as a
convenient platform to study strong interactions between
Majorana zero modes: vortices in a surface of 3D TI with
induced superconductivity and the chemical potential tuned to
the Dirac point. It was argued that for this special point, direct
Majorana-Majorana tunneling is absent due to the additional
chiral symmetry of the underlying physical system [28-31].
The system of MZMs is then in the so-called symmetry class
BDI and can be viewed as respecting a fictitious time-reversal
symmetry [32] © such that ®? = 1. The dominant term in the
low-energy Hamiltonian is the four-Majorana interaction that
arises from the Coulomb interaction between the constituent
electrons [31]. A number of interesting phases have been
identified in this setup [33-36], including some interaction-
enabled phases [32,37-39].

In this paper, we study the effects of interactions on the
phases of the MZMs in dimensions 0-3. We consider systems
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with time-reversal symmetry ®, and the main focus of the
paper is on OD and 1D. We start with the zero-dimensional
(0OD) case. We first argue for Zg Fidkowski-Kitaev periodicity
of the ground-state degeneracy [40,41] to coincide with the
degeneracy of the entanglement spectrum [42]. The problem
can be stated as follows. Given the set of n MZMs such that no
direct tunneling between them is allowed, what is the ground-
state degeneracy in the presence of generic four-fermion
interactions? By a combination of simple arguments and direct
computations, we determine the degeneracy for n =1...8
and then present an argument that the pattern repeats itself
with the periodicity of 8. We then suggest a tunneling probe as
a way to experimentally observe the expected Zg periodicity.
The probe would reveal the absence of the zero-bias peak for
the total vorticity being a multiple of 4, in contrast with the
noninteracting case for which we expect the zero-bias peak to
be absent for even total vorticity.

The second part of the paper focuses on the interaction-
enabled crystalline topological phases in dimensions 1, 2,
and 3. As previously noted by Lapa, Teo, and Hughes
(LTH) [43], in the presence of inversion and the fictitcious
time-reversal symmetry there exist no topological phases
in noninteracting 1D models. This is because the inversion
symmetry maps the integer topological invariant v to —v. For
an inversion-symmetric system, therefore, v = —v, implying
v = 0 as the only solution. In the presence of interactions, the
integer classification changes to Zg. Under Zg, remarkably, the
equation v = —v has a nontrivial solution v = 4, indicating
a genuine interaction-enabled crystalline topological phase.
We discuss a physical setup that realizes such a phase in the
system of vortices and antivortices in the surface of a 3D
TI. We start this discussion by introducing a nontrivial but
exactly solvable “two-leg LTH model” that is closely related
to the LTH model but does not exhibit the topological phase.
It has two distinct phases, distinguished by a conventional
broken symmetry. The two-leg LTH model can be mapped
onto a collection of the Kitaev chain models, which allows for
exact solution. We use this model to benchmark our numerical
simulations which we then employ to study the “four-leg LTH
model” which has an interaction-enabled topological phase.
The four-leg model is exactly solvable only in two extreme
limits, the strong coupling limit shows the topological phase.
We use exact numerical diagonalization (ED) and density
matrix renormalization group (DMRG) techniques to study its
ground-state degeneracy, central charge, and the entanglement
spectrum away from the exactly solvable limits. We show that
the topological phase extends over a significant part of the
phase diagram.

We close by proposing variants of the interaction-enabled
topological crystalline phases in 2D and 3D that can be built,
at least in principle, from the ingredients at hand. As in 1D,
these phases require interactions for their existence and exhibit
anomalous edge or surface states protected by a combination
of time-reversal and crystalline symmetry such as inversion or
discrete rotation.

II. PHYSICAL SYSTEM

In this section, we introduce our platform for strongly
interacting Majorana fermions and review some facts that
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will be important in what follows. We consider vortices in
the surface of a strong topological insulator in the proximity
with an s-wave superconductor, which was first proposed by
Fu and Kane [16]. When the chemical potential is tuned
to the Dirac point, a fictitious time-reversal symmetry ©
emerges. Hopping of MZMs located in the individual vortices
is forbidden by ® and the second major effect, interaction,
becomes dominant [31,32]. Here, we will only review the
surface physics briefly and point out the important for this
work properties of the Hamiltonian and the wave functions in
the Fu-Kane model. The Hamiltonian of such a system in the

Nambu four-vector basis (c4r,c w,cir, —cL) reads as

Hpk (r,p) = vpio,T, + UVPyOyT; — UT;
+ReA(r)t, + ImA(r)z,, €))]

where o and t are Pauli matrices in the spin and Nambu
basis, respectively. Particle-hole symmetry automatically is
preserved with B = 1¥0”K, where K represents complex
conjugation. In the absence of the vortices, the system also
preserves physical time-reversal symmetry ©® = o, K. By fine
tuning of the system, namely, adjusting p to zero, the system
respects time-reversal symmetry with ® = t*6*K. Notice
that the physical time-reversal symmetry, which is broken in
the presence of magnetic field, squares to —1, as it should
for spin-% particles, but the ®?% = 1, which is allowed for
an accidental symmetry. Furthermore, chiral symmetry is

automatically preserved with the operator [T = E® = —1%0 7.
In the following, we focus on the © = 0 situation with the extra
symmetry.

If we assume a vortex at the origin, the gap profile in polar
coordinates is A(r) = A(r)e’?, where n is the vorticity of the
vortex. For a system respecting ® and E, the vorticity is the
same as the total number of the MZMs inside the vortex as
we will see shortly. We call the cases with n > 0 vortices, and
n < O antivortices. The wave functions for these two cases are,
respectively,

@y = (O.uy.ui.0), &y = (.00, —up). )

These wave functions belong to the opposite eigenvalues £ 1 of
the chirality operator I1. Importantly, the symmetry IT forbids
the hybridization between two Majorana zero modes with the
same chirality [28-31].

To simplify the Hamiltonian and bring it into block off-
diagonal form, we perform a unitary transformation Hrg —
U HgxU —1 with

U= A3)

— o OO

0
0
1
0

[=NeNel
S o= O

This renders the equations for the zero mode for both vorticities
D)y, () =0, D'(x)x; =0, “

where

D e—ingo—iot Ao(r)
- inp+ia A
e o(r)

—e'?(—id, + %)

e (—id, — 87“’)) 5)

and @, = U(0,x,)", &1 = U(x4,0)". We thus establish the
basic building block of the setups we will consider: a vortex
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of vorticity n, which carries n Majorana zero modes. If n = 1,
then the zero mode obtained from Eq. (4) is automatically
the Majorana zero mode, otherwise MZMs can be obtained as
linear combinations of these modes.

In what follows, we shall call «; the creation operators of
the MZMs from the | sector and §; from the 1 sector. We
see from the explicit form of the Majorana wave functions
in the two spin sectors [see Eq. (2)], that the two types of
MZMs transform differently under the emergent time reversal,
namely [32],

@(Xjé_l =qaj, @ﬂjé_l Z—ﬁj. (6)
Along with the property ® ®~! = —i this implies that one can
construct a complex fermion c¢; = %(a j + iB;) that transforms
naturally [40,41,43] under ©, as Oc;0®~' = c;. In the rest
of this paper, we shall study systems of MZMs described
by ©®-invariant Hamiltonians that contain both two-fermion
“tunneling” terms and four-fermion interaction terms. The
former arise from the wave-function overlaps between MZMs
while the latter originate from the interactions between the
constituent electron degrees of freedom. These include the
direct Coulomb repulsion, as well as interactions mediated
by other degrees of freedom such as phonons, which may be
attractive.

In a G-invariant Hamiltonian Eq. (6) allows tunneling terms
between different types of MZMs of the form

Hin =i Y _ tiji ;. (7)

but prohibits those between the same chirality such as io;o;
and if;B;. Interaction terms with an even number of o
operators such as oo, BiBjBrBm, and oo By B, are
allowed but those with an odd number are prohibited. An
interesting consequence of this structure arises in a system
that is composed solely of vortices (and no antivortices).
According to the above discussion, all tunneling terms are
then forbidden and the kinetic energy is quenched. Interaction
terms, however, are allowed by symmetry and the system is,
therefore, inherently strongly interacting. In a realistic setting,
the chemical potential will always be slightly detuned from
zero (either globally or locally due to disorder) leading to
nonzero Hy,. However, as long as this detuning is small
compared to the interaction scale g the system must be viewed
as strongly interacting.

In Sec. III, we work with interactions only (assuming ;& = 0
and the presence of only vortices in the system) while in Sec. IV
we consider interacting systems composed of both vortices
and antivortices that exhibit interactions as well as hopping.
In this way, we establish experimentally realizable strongly
interacting phases of the Majorana bound states.

III. FIDKOWSKI-KITAEV PERIODICITY

In their seminal work, Fidkowski and Kitaev [40,41]
predicted that in the presence of interactions the Z topological
classification of 1D systems of fermions with symmetry
© (class BDI) breaks down to a periodic Zg one. That
is, the gapped phase with the winding number v = § can
be continuously deformed to the trivial phase by turning
on local interactions without any gap closing. The original
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FIG. 1. (Color online) Top view on the setups we suggest to
observe the Zg periodicity of the BDI Majorana model. Blue is the
area covered by the superconductor, and yellow is the bare surface of
the topological insulator. (a) A single large hole in the superconductor.
Similar to Corbino disk geometry all the magnetic field goes through
the hole. Total flux is n®, and the total number of MZMs in the
noninteracting model is n. (b) The lattice of vortices. We consider a
square lattice with 2 x n/2 vortices. If n is odd, there are (n — 1)/2
lines of two Majoranas and one line with just one, similartothen = 5
case in the figure. Such an arrangement can be created by introducing
strong pinning centers into the superconductor.

nontrivial phase possesses v Majorana zero modes at each
edge. The above result fundamentally depends on the fact that
symmetry-preserving interactions can completely remove the
24-fold ground-state degeneracy of eight MZMs but cannot
do it for any smaller number of MZMs. Fidkowski and
Kitaev considered a very specific, highly symmetric, form of
interactions to demonstrate the above effect. How general or
finely tuned the interactions need to be to produce the unique
ground state for eight MZMs, however, remained unclear.
Here, we show that under quite general conditions, the ground-
state degeneracy of eight Majoranas is split by Coulomb
interactions between the constituent electrons. Moreover, we
give a general argument showing the Zg periodicity of the
ground-state degeneracy in a system of n Majoranas in
accordance with the Fidkowski-Kitaev result. We also explain
how the resulting Zg periodicity induced by interactions can
be experimentally observed.

In this section, we are interested in compact OD struc-
tures with the total vorticity n. We assume that . = 0 and
no tunneling terms between MZMs are therefore allowed
although generic four-fermion interaction terms are present.
We consider two specific physical setups realizing such a
system, shown in Fig. 1. The first is a superconductor with
a large hole put on top of the TI with n superconducting flux
quanta threaded through the hole as outlined in Fig. 1(a).
This geometry can be viewed as a Corbino disk familiar
from many superconducting applications. We therefore expect
that this configuration is the easiest for experimental access.
The second setup is an array of single vortices illustrated in
Fig. 1(b). This requires more fine tuning, for example, creating
strong pinning centers for the vortices, but is ultimately
also accessible experimentally, especially since our qualitative
results do not depend on the exact geometric arrangement of
vortices. We discuss the tunneling conductance signature of
the interacting system and how it is modified as compared to
the noninteracting case.

A detailed calculation of the energy spectra in these two
systems shows that the same ground-state periodicity of 8 in n
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is observed in both. We generalize this result by providing an
argument which proves the connection between the periodicity
of the entanglement spectrum and the periodicity of the
ground-state degeneracy for a system of n Majoranas with
generic four-fermion interactions. We also comment on the
applicability of this argument to the physical realizations of
the interacting Majorana model suggested above.

A. Giant vortex in a Corbino geometry

We start our discussion by considering the setup depicted in
Fig. 1(a). We envision a hole in the superconducting coating,
through which a number n of superconducting flux quanta
®( = hc/2e is threaded. This is equivalent to systems already
studied in the context of TIs [44]. In this section, we will
consider one sign of vorticity, positive for definiteness. We
search for the solution of Eq. (4) in the form

1 ei[(n—l—m)(p+a/2—rr/4]um(r)
Xm(r) = E( emitmpta/2zn/ay, ) ) 3
to obtain
Ao(Fiun(r) + (a, = ﬁ)vmm 0
r
)]

Ao(r)vn(r) + (ar - ’H—_m)umm =0.
r

Let us now take into account the practical realization of this
giant vortex. We imagine a hole drilled in the superconductor,
thus leaving the order parameter zero inside the hole and large
outside [see Fig. 1(a)]. Thus, inside the hole Eq. (9) reduces to

m
(ar - _)Um(r) =0,
r

(10
n—1—m
<8r - —)um(r) =0,
r
having the obvious solutions
U (r) o r™, an
U (r) o r" I (12)

Notice that when either of the powers is negative, the solution
becomes non-normalizable at » = 0, similar to the arbitrary
gap profile situation discussed first by Jackiw and Rossi [45].

The boundary condition at the external radius r( of the hole
is determined by the absence of solutions growing into the
superconductor. Equation (9) under the assumption of large
gap inside the superconductor gets simplified to

AO(r)um(r) + arvm(r) =0,

(13)
Aoy () + 0,uy(r) = 0.

This requires

U (ro) = vy (ro). (14)
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Therefore, inside the hole we have

um(r) = A(r/ro)", s)
U (r) = AGr/ro)" 7" (16)
Normalization of the wave function then requires
/Orordr[v,%,(r)Jrufn(r)] =1, (17)
which finally gives

1 1 —1/2
A=r? +
0 |:2m+1 2n—2m—l:| '

We have thus found the wave functions of the Andreev
bound states in the hole at zero energy. To proceed in a
uniform fashion, we change to the Majorana basis. For that we
first rewrite the solutions of the BAG equation in the second
quantization form

(18)

1 o
Xm = ﬁ/dr(e'[(” ! ’")‘Ho‘mum(r)cir

+ e TRy, (R)e ). (19)

‘We notice that the connection betwef_;n Andreev bound state
withindicesm andn — 1 — m: x,, = Xri—l—m aAS Vp_1—m = Up.
Thus, form < (n — 1)/2 we can define MZM operator as

_ Xm + Xn—1-m

o (20)
V2
and form > (n — 1)/2
@, = l.Xm - Xn—l—m. 1)

V2

Form = (n — 1)/2 and n odd, we also have
O = Xom- (22)

The interaction between MZMs arises from the underlying
electron-electron interaction

o = % f drdr p®V (r.r)o(r), (23)

where p(r) =), cf,rc(,r represents the electron density oper-
ator. The interaction matrix element between MZMs can be
computed by expressing the charge density operators in terms
of the eigenstates of Hpk and projecting onto the zero-energy
Majorana subspace, as described in Ref. [31]. One then obtains
MZM interaction Hamiltonian of the form

Hine = Zgijklaiajakal- 24
ijkl
The matrix element g;;z; is computed numerically from the
eigenfunctions u,,, v, and the electron-electron interaction
potential V. In what follows, we will use screened Coulomb
potential

Vo e~ Ir=r/rs , (25)

V(rvr/) = |r _ r/|

where V) is the Coulomb interaction strength, and r; is the
screening length. We use r; — oo below, but we have checked
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FIG. 2. (Color online) Positions of energy levels and conduc-
tance peaks as a function of the total vorticity n for the two setups
depicted in Figs. 1(a) and 1(b) correspondingly. Red cross depicts
the position of the energy level observable as Lorenzian peaks in
tunneling conductance. Blue bar shows the energy level different
from the ground state by an even number of fermions. Such level is
not observable by single-electron tunneling.

that the finite screening length does not change the results
qualitatively. We will work in the units where the radius
of the hole is 1. In these units, if the hole has a radius of
100 nm and taking into account the dielectric constants of
the TT materials, ranging from € = 20 for HgTe to ~200 for
Bi, Tes; [46], interaction strength is V ~ 0.72-0.072 meV, and
the magnetic field to create vorticity 8 in the core is ~65 mT.

By exact numerical diagonalization of the many-body
Hamiltonian H;,; with all four-fermion interactions as com-
puted above, we find the energy spectra of the system for n up
to 16. The low-lying eigenenergies for n up to 8 are displayed
in Fig. 2(a). The structure here is easy to understand for small
n. For n = 1,2,3, no four-fermion term can be constructed,
Hine = 0, and all the states are at zero energy. For n = 4 we
have Hi, = gojopazos which results in a twofold-degenerate
ground state and twofold-degenerate excited state. For n >
4 progressively larger number of interaction terms can be
constructed and the energy levels must be found numerically.
From this we deduce the ground-state degeneracies and find
that they repeat in n with periodicity of 8 as predicted by
Fidkowski and Kitaev [40,41]. The degeneracies are listed
in Table I and agree with degeneracies of the entanglement
spectrum for the corresponding topological phases predicted
in Ref. [42]. This is true for a range of parameters, in particular,
we verified this result for different screening lengths ry. Based
on this observation, we hypothesize that the periodicity of the
ground-state degeneracies holds for larger vorticities and for a
generic arrangement of vortices. We will prove this statement

PHYSICAL REVIEW B 92, 075438 (2015)

TABLE I. Ground-state degeneracy in the presence of generic
four-fermion interactions as a function of the total number of MZMs
n modulo 8. Irrational ground-state degeneracy for odd numbers of
MZMs implies that if we bring an additional MZM into the system
but do not couple it to the system of interest, then the ground-state
degeneracy is multiplied by +/2 and becomes rational. This is always
a valid interpretation since in any physical systems the total number
of MZMs is even.

nmod 8 o 1 2 3 4 5 6 1
VIoV2 VA B VA B VA V2

GS degeneracy

below and specify more carefully the conditions under which
it is valid.

The Zg periodicity is experimentally observable in a single-
electron tunneling spectroscopy. Similar to the noninteracting
case, we consider tunneling into the states of the n Majoranas,
either using scanning tunneling microscopy (STM) or a normal
contact attached to the hole region. The tunneling can only
take place if the matrix element of ¥ and ¥ between one
of the ground states and the state into which we are trying to
tunnel is nonzero. Otherwise, one needs two particles to tunnel
simultaneously, the process smaller in the tunneling amplitude,
which we will neglect. We depict the positions of the lowest
excited levels along with the possibility to observe them in
tunneling conductance in Fig. 2(a).

B. Array of vortices

Another possible setup to observe the Zg periodicity is
depicted in Fig. 1(b). We consider a square array of single
vortices of size 2 x n/2. For odd n, the last vortex is alone in
the last line. In such a setup we need to make an assumption
about the screening of the electron-electron interactions. As
an example, we assume that all the vortices are closely
situated, and the amplitude of the interaction between any
four Majoranas is the same, V). This is an unnecessary
assumption (we have obtained qualitatively same results for
different screening lengths), but it removes multiple interaction
strengths and simplifies the expressions.

The interactions, however, have dependence on the phase
difference between the vortex cores [31]. This is the depen-
dence we take into account to obtain the positions of energy
levels of the system. These, and their respective observabilities
by single-electron tunneling, are depicted in Fig. 2(b). We
assume the possibility to tunnel into any of the vortices of the
array, i.e., the tunneling probe much larger than the size of the
array. Again, nothing qualitatively changes if we tunnel into a
single generic vortex.

C. General argument

In this section, we will discuss the ground-state degeneracy
for the system of n interacting Majoranas. Due to locality
of the edge states, this system is equivalent to an edge
of a BDI wire with the quantum number n. We will use
the following definition of the ground-state degeneracy for
a system of n MZMs: it is the degeneracy of the ground
state in the entire multidimensional parameter space of the
Hamiltonian with all the interactions allowed by symmetry
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turned on. The degeneracy can be higher on a measure-zero
region of parameter space, where the accidental degeneracies
are present on top of the obligatory ones. The simplest example
of such a region is the point where all the interactions
are turned off. We assume there are no two regions of
parameter space that are having nonzero measure and different
ground-state degeneracies. This assumption is justified by the
zero-dimensional nature of the system, where there is no
locality condition which can prevent two states from splitting.

It turns out that it is convenient to prove a more general
statement: generically all the excited states in such systems
will have the same degeneracy as the ground state. We will
use the results of the more general argument and apply them
to the ground-state degeneracy. It is straightforward to expand
the argument to all the excited states as well.

We can explicitly construct the states with the ground-state
degeneracies as shown in Table I for k =0...7 MZMs.
Examples of such constructions were just shown in the
previous section. In all such examples, the degeneracy of the
ground and excited states was found the same as expected
according to the general periodicity of Table I. We now add
to the group of k Majoranas m blocks, each containing eight
Majoranas with nondegenerate ground states. We thus obtain
a system of n = 8m + k Majoranas with the ground-state
degeneracy the same as for k interacting Majoranas. Coupling
these blocks together with a small enough coupling cannot
increase the degeneracy of the ground state since one needs
finite perturbation to close the gap. This limits the ground-state
degeneracy for n Majorana bound states from above to the
values in Table I.

What is left is to prove that the above limit is actually
the ground-state degeneracy for n Majoranas in a region
of parameter space. For k = 0,1,7, the limitation of the
ground-state degeneracy from below is obvious: for k = 0
the degeneracy is 1, while for k = 1 and 7 it is +/2. The
ground-state degeneracy of at least V2is always present for an
odd number of Majoranas since then there is a single Majorana
mode that can be decoupled from all the others, thus giving
the desired +/2 degeneracy.

We will prove the limitation on the ground-state degeneracy
from below by induction. The starting point is that for n =
0,1,2,3 no interaction term can be added to the Hamiltonian,
thus the limitation of the ground-state degeneracy from below
is obvious. Forn = 4, there is a single interaction term allowed,
as discussed above, that involves all the four Majoranas. Such
an interaction halves the ground-state degeneracy, and makes a
doubly degenerate excited state [32]. We now come to the step
of induction, which will generalize the result to arbitrary n.

The induction step goes via reductio ad absurdum path.
Assume that we have for n = 8m + k Majoranas degeneracy
lower than expected. We already know that this is impossible
for k =0,1,7. Let us proceed with the k = 2,6 case. The
ground-state degeneracy expected one reads off Table I is 2.
Our assumption dictates that there is a region of the parameter
space where the degeneracy is 1 (and correspondingly the
degeneracy of the excited states is 1 as well). Now, we
use the fact that we have already proven our argument for
the total number of Majoranas n’ = 8 — k, where the ground-
state degeneracy is 2, and the two ground states are different
by a fermion particle number.
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Let us now bring the n’ Majoranas and 8m + k original
ones together. The ground state of the decoupled system is
one with an empty and an occupied fermion level. To couple
the two ground states, one needs a degenerate empty and
an occupied fermion level in the rest of the system, which
is absent due to the ground-state degeneracy 1. To prove
this statement, one needs to rewrite the total Hamiltonian
in the block-diagonal form, where one block corresponds to
the empty fermion level, and another to the occupied. Then,
one notices that as each of the blocks is nondegenerate and as
there is a symmetry of the total Hamiltonian under changing
the occupation of the fermion, the doubly degenerate ground
state stays doubly degenerate even after coupling to the rest
of the system. Therefore, for 8m + k + n’ = 8(m + 1) Majo-
ranas there is a region of parameter space, where the ground
state is doubly degenerate, which contradicts the assumptions,
and consequently proves the statement for k = 2,6.

We can now add to 8m 42 Majoranas another two.
We notice that there are two fermionic modes, empty and
occupied, forming the ground-state manifold without the
coupling between the two systems. It is clear that since there is
no direct tunneling between the Majoranas, the only coupling
allowed in the model consists of the two new Majoranas and
the occupation number of the old fermion. Therefore, we are
left with the ground-state degeneracy 2, but this degeneracy
is between two states different by a bosonic operator, which
proves the constraint on the ground-state degeneracy for k = 4.

Now, we notice that k = 3,5 is different from k = 4 by
a single Majorana fermion. By adding or subtracting the
Majorana, it is impossible to remove the bosonic degeneracy
of the ground state and the degeneracy should be enhanced by
a factor +/2 over k = 4. This concludes the proof.

IV. LAPA-TEO-HUGHES MODEL

We now turn to the 1D models of interacting MZM:s.
Lapa, Teo, and Hughes [43] (LTH) introduced a model of
fermions in class BDI that is forced to be in the trivial
phase by additional inversion symmetry in the absence of
interactions. When interactions that respect the symmetries
are introduced, the system, however, might transition to the
topologically nontrivial phase characterized by gapped bulk
and fourfold ground-state degeneracy associated with a pair of
Kramers doublets bound to the two edges of the 1D system. An
experimental realization of the 1D LTH model, using MZMs
in vortices and antivortices in the surface of a TI, has been
proposed [32]. The proposed setup is depicted in Fig. 3(c) and
consists of alternating clusters of eight vortices and antivortices
(that support four-fermion interactions) connected to one
another via tunneling terms. In the limit of strong interactions,
the ground state can be thought of as a direct product of
unique ground states associated with each eight-vortex cluster.
The ground-state degeneracy is associated with the quartet of
MZMs located at each end of the chain and is protected by ©.
This is a genuine interaction-enabled topological phase as no
nontrivial phase can exist in a system with these symmetries
in the absence of interactions [43]. Importantly, it persists as a
stable phase for a finite strength of hopping 7.

In this section, we study the LTH model in detail by numer-
ical techniques. We determine its phase diagram, ground-state
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FIG. 3. (Color online) Lattice geometries for the interacting Ma-
jorana models. Color blue (red) indicates (anti)vortex Majorana
modes, while solid and dashed lines indicate interaction and hopping
terms, respectively. Panels (a) and (c) represent the two-leg and the
four-leg LTH ladder, respectively. These two models are invariant
under particle-hole (2), time-reversal ©, and inversion P operations.
(b) The two-leg LTH model under the Majorana basis transformation,
as discussed in the text.

degeneracy, as well as the entanglement spectrum. To facilitate
this study, we introduce a closely related 1D model that is
exactly soluble. This is depicted in Fig. 3(a) and consists of
alternating clusters of four vortices and antivortices. We call it
the “two-leg LTH model.” The original “four-leg LTH” model
can thus be thought of as two coupled two-leg models. We also
discuss potential realizations of the LTH-type models in 2D
and 3D and their relevance to experimental systems.

A. Two-leg LTH ladder

The two-leg LTH model Fig. 3(a) can be regarded as
composed of two parallel Majorana chains, which preserve
time-reversal © and the reflection symmetries. Since the
presence of inversion symmetry trivializes the Fidkowski-
Kitaev Zg two-channel chain [43], this model should exhibit
only topologically trivial phases even in the presence of
interactions. Using the «, B notation as illustrated in the right
half of Fig. 3(a), the Hamiltonian is written as

M 2
H=—it Y Y (@ 14Boat Bra2us1a)

k=—M a=1

M M-1
+8 > haBuoBu) +8 D hi(en 0. (26)
k=—M k=—M

We consider a system with N’ Majorana sites along the chain,
N’ being a multiple of 4. For convenience, we define (half)
integer valued M = (N’ — 4)/8. Index k is then also (half)
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integer and extends between —M and M. The interaction
0GansAy) = Apahy, 1A 2);, . The hopping between the same
type of Majoranas, which breaks the time-reversal symmetry,
is absent in the Hamiltonian. The symmetries allow for
interaction terms containing two « and two 8 operators but we
expect these to be small compared to the direct hopping terms
already included in . We thus include only four-fermion
terms between the same type of MZMs.
The model is integrable because it has an extensive number
of constants of motion. Specifically, it is easy to see that
products

(1)
Ay =y @y 2B P, on

?2) ’ ’
AL = Bo 1 Bok 0%2k+1,100k+1,2

commute with H for all k. In the following, we introduce
a nonlocal transformation that allows one to replace these
operators by ¢ numbers and maps the problem onto a collection
of noninteracting 1D Kitaev chains.

To effect the transformation, it is expedient to relabel the
MZM operators as indicated in the left half of Fig. 3(a). The
Hamiltonian can be written in an economical way

N
H = —it Z(VZH—leH—Z + Va1 Va42)
1=0
N-1
-8 Z Vair2VapsVas2Varsss (28)
1=0
where N = (N’ — 2)/2.

The operators transform y; — (=1)7y;y 43— and yjf —
(—1)y2n+43—; under the inversion operation, of which the
inversion center is located at the middle of the (N + 1)th and
(N + 2)th sites since (a,o’,8,8) — (&', —a,B’, —B). (The
minus signs are coming from the spin—% of the Fu-Kane model,
see Sec. [V D.) Since inversion symmetry in a 1D system plays
an effective role of reflection symmetry, it will be shown in
Sec. IVD that the Hamiltonian is invariant under all of the
symmetries in class BDI + R__ [6,47].

Any 1D chain in this reflection-symmetry class without
interactions is always in the trivial phase. For this two-leg
model even in the presence of the interactions the system is
still trivial, but it is exactly solvable.

The transformation, analogous to the Jordan-Wigner trans-
formation, is

k<j
Yi = Pj(l_[ ibkak)ibj_laj, (29)

k odd

k<j
yj{ = —in< 1_[ ibkak)ibjlaj, (30)

k even
(3D

where
) j odd

P = {—i, j even. (32)

Here, a; and by are Majorana operators satisfying

{ax,ap} = 28k ks {br,br} =281, {ax,bp} =0, (33)
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and k runs from O to N. It is straightforward to check that this
transformation does not change the original y, ¥’ commutation
relations. Now, we can rewrite the original Hamiltonian in the
new Majorana basis. For odd j it holds

ViViv1 =bj_1aj41, 34)
Vi¥is =ibjiabjajy, (35)
while for even j
Yivj+1 = —ibjiajbjajy, (36)
YiVip = —bj-1aj41. (37)
Therefore, the Hamiltonian is rewritten as
N N-1
H = —it Zb21021+2(1 +iayiibys1) + g Z iay2boyt.
1=0 1=0

(38)

We note that the number of Majoranas in the a, b basis is two
more than the number of Majoranas in the y, y’ basis as shown
in Fig. 3(b). The reason is that we have introduced two extra
free Majoranas ag and b,y 4. These are necessary to satisfy the
canonical commutation relations and the redundancy should
be kept in mind when discussing the ground-state degeneracy
in the transformed basis.

After the transformation, it is clear the system has many
integrals of motion s; = iayy1by+1. These are the same
quantities as defined in Eq. (27). We can replace them by their
respective eigenvalues s; = =£1. In each sector, labeled by the
set of quantum numbers {s;}, the transformed Hamiltonian
is noninteracting and represents a “broken” Kitaev chain
illustrated in Fig. 3(b). It has alternating bonds with hopping
strength given by g and (1 + s;)7. In the sector with all
s; = +1, this model describes a single Kitaev chain with a
phase transition between its two gapped phases att = g/2.In
the sector with all s; = —1, the system consists of disconnected
monomers and the spectrum is a pair of flat bands; ¢ does not
enter. In the mixed sector, where some hoppings are present
and some are absent, we have an array of the disconnected
Kitaev chains of finite length. It is clear that the wider
the bandwidth of the Hamiltonian, the lower the energy of
the ground state in a given sector. Therefore, we expect
the absolute ground state to be in the s; = +1 sector. We
have confirmed this by explicit numerical simulation of the
Hamiltonian (38) on a lattice up to 19 integrals of motion (20
Majoranas in the hopping model, 58 in total).

We now study the ground state s; = +1 sector. It is
known that the Kitaev chain is dual to the transverse-field
Ising model [48]. The phase transition between its two
gapped phases is therefore in the transverse-field Ising model
universality class. Indeed, it is possible to transform the
two-leg LTH Hamiltonian onto a set of broken Ising chains,
either directly going from y operators to spin—% operators,
or in two steps via the broken Kitaev chain Eq. (38). This
also helps to understand the nature of the gapped phases of
the original model. In the transformed basis for r > g/2, the
absence of ground-state degeneracy leads to the topologically
trivial phase. For ¢ < g/2 Majorana zero modes appear at each
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end in the a, b basis. When we assume N > 1, the form of
the end modes is given by

1 N 21\
B=—— —— ) by, 39
1+2r/gZ,_0< g) ’ &
N !
1 2t
A= —— 3 (-2) awan 40
1+2t/gl=0< g)aZN 2% (40)

The fermion operator B 4 Ai switches one ground state to
the other. Although these Majorana operators are localized in
a, b basis, the fact that the transformation (29) is nonlocal
means that in the original y,y’ basis, these operators do
not represent edge degrees of freedom. In the original basis
t < g/2 is a conventional broken-symmetry phase, akin to
the ferromagnetic phase in the Ising model. [The symmetry
that is spontaneously broken in Hamiltonian (28) for r < g/2
is generated by y{ — —y,. It remains unbroken in the other
phase.] The two-leg LTH model undergoes a phase transition
but both phases are topologically trivial as expected on the
basis of general arguments presented above.

To confirm the above conclusions, we have performed
DMRG calculations to compute the energy spectrum, the
entanglement spectrum, and the central charge of the system
as a function of dimensionless coupling g/t. The spectra in
Figs. 4(a) and 4(b) show that the phase transition indeed occurs
at g/t =2 as the gaps close. The ground state is doubly
degenerate for g > 2¢ and the entanglement spectrum also
shows twofold degeneracy in the symmetry-broken phase.
Importantly, the ground-state degeneracy in this case occurs
for both open and periodic boundary conditions, confirming
that g > 2¢ is a conventional broken-symmetry phase. To
confirm the phase-transition property, we numerically compute
the central charge ¢ using its relation with the entanglement
entropy of ground states [49]

c N’ |
S(n)=-1n <— sin —) + Sp. “41)
3 b4

Here, N’ is the system size, n is the size of subsystem, S(n) is
the corresponding entanglement entropy, and Sy is a constant.
At the critical point Fig. 4(c) indicates the value % of the
central charge in agreement with our expectation that the phase
transition is in the universality class of the transverse-field
Ising model.

B. Four-leg LTH ladder

We proceed with the examination of the four-leg LTH
model whose geometry is illustrated in Fig. 3(c). In the
absence of interactions, the restriction of inversion symmetry
prohibits any topologically nontrivial state. Let us start with
a noninteracting four-leg setup to illustrate this. Due to the
restriction of the symmetries, only hopping terms between o
and B MZMs are present in the Hamiltonian. If we focus on
the nearest-neighbor such hoppings, the Hamiltonian reads as

M4
Hhop = —i Z Zt(aék—l,jﬂ%,j + By j@kt1.),  (42)

k=—M j=1
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FIG. 4. (Color online) The numerical results of the two-leg LTH model are computed using DMRG as g/t varies. Here, N’ indicates the
length of the chain, N = 2N + 2 in Eq. (28). (a) AE; = E; — E| is the energy difference between the ground state and the ith excited state in
a system with open boundary conditions. (b) Entanglement spectrum for periodic boundary conditions. (c) The central charge c. At the critical
point, it is well defined and size independent. Furthermore, the energy gap closes and the number of the degenerate states in the entanglement
spectrum changes at g/t = 2. Thus, the critical point is at g/t = 2 as expected based on the analytic solution. In panels (a) and (b), N = 120.

where M is a (half) integer. The system is formed by a set
of Majorana dimers and, importantly, all the Majoranas in
the system are hybridized by the hopping. Therefore, there
are no edge states and the system is topologically trivial.
To generate the topological phase, we introduce reflection-
symmetry-preserving interactions. The dominant interaction
involves groups of four Majoranas of the same type:

hy(A) = &' hiihi 2k 3M 4, (43)
hD()”lf)”;) = 81()‘1,1)‘;,1)‘1,2)‘;,2 + )\1,3)‘;,3)”1,4)‘;,4)
+ 822 021 0 3 35 (44)

where A, ; stand for either o or 8 MZM. As shown in Fig. 3(c),
the Hamiltonian of the open chain including the interactions
can be written as

HLTH = Hhop + Hinta (45)

where

M
Hin =Y (e )+ 7 (By) + hi(By) + hy(eyy )]

k=—M
M M-1
+ D ho(BuB) + Y ho(ayy.ahy). (46)
k=—M k=—M

To implement periodic boundary conditions, we add an
extra interaction term hg(o,,, H,ocL om—1) to the Hamilto-
nian. The Hamiltonian is invariant under inversion-symmetry
operation {al,j,a,”j} — {“/—z,s—j» —a_;5-;}and {ﬂ,,j,ﬁl’,j} —
{8, 5—js —pB—15—;} since the Fu-Kane model is an intrinsic
spin-% system (see Sec. IV D).

Let us first consider the extreme case when the hopping
is off, t = 0. The Hamiltonian then consists of decoupled
clusters each containing eight (anti)vortex Majoranas. We may
compute the ground state of each such cluster described by

Heb = 1| (A) + by(X) + ho(h,A). 47

Assume g, g, g are positive and define four complex
fermions d; , = (&; , + i}/ ,)/2 in each cluster. The many-
body wave function can be expressed in the fermion basis

|[ninansng), where n, is the eigenvalue of the fermionic

number operator (i, = d}ad i.a)- The unique ground state

is then given by (]J0000) — |1111))/«/§ with energy —2g; —
g — g'. As a result, with the periodic boundary conditions
the four-leg LTH model has a unique ground state in the limit
when ¢ = 0. Since there is a gap to the lowest excited state,
we expect this nondegenerate ground state to survive for some
range of nonzero .

For open boundary conditions that respect the reflection
symmetry, four o’ , M_1.q atthe left end and four app74 1.4 at the
right end have only interactions described by (e’ ,,,_,) and
hy(etyp,41)> Tespectively. It can be easily seen that four many-
body Majorana operators constructed from the edge MZMs

’ ’ ’ ’
O om-11%2m—1,20 Yom—13% 2p—1.45

Dom+1,1%M+1,20  Xom+1,3%Mm+1,4

commute with the full Hamiltonian. This implies fourfold
degeneracy of the ground state associated with the ends of
the chain. As argued in Ref. [43], the emergent time reversal
© acts anomalously in this degenerate subspace (such that
®?% = —1) and the states can thus be viewed as two Kramers
doublets. We therefore expect the degeneracy to be robust
against any perturbations that do not break © and as long as
the bulk remains gapped.

We now study the general case with hopping ¢ turned
on by means of DMRG. For simplicity and concreteness,
we take g = g; = go» = ¢’ but this is by no means essential.
Figure 5(a) shows four lowest-energy states obtained by
DMRG as a function of g/t for open boundary conditions. This
indicates a phase transition at g./¢ ~ 0.83 to the state with a
fourfold-degenerate ground state, in agreement with the above
analysis. Importantly, no such degeneracy is observed for
periodic boundary conditions, which confirms the topological
character of the interacting phase.

An alternative way to confirm the nontriviality of the phase
is to consider the degeneracy of the entanglement spectrum.
To compute the entanglement spectrum, the LTH model with
periodic boundary condition is separated by the two vertical
cuts between horizontally closest (anti)vortices. In agreement
with the ground-state degeneracy of the open chain, the
entanglement spectrum Fig. 5(b) exhibits fourfold degeneracy

075438-9



PIKULIN, CHIU, ZHU, AND FRANZ

PHYSICAL REVIEW B 92, 075438 (2015)

(a) (b) (c)
25 15— 5w = —
—G—AE ° o S i mmmm mm ! —N’=96
o o ! o o om
1 =G} .o E E:Em mEmm 0.5 ; ___Ns=112
—m-—AE2 L B8 :mmEEEEE o /o
10 e é; T ©0.4 A
1.5 --AE, g o Bl s !
Eent 7.7 P Oos3 7 P
AE; 1 g ° o B E gim g / : )
5 SRR . S: 502 vy
- ° 8 o ' Lo
0.5 = 5 0.1 ¥ b
F— ’ b
g P ! N
% 02 04 06 08 10 12 14 16 % “05 04 06 08 10 12 14 16 .70 0.75 0.80 0.85 0.90
g/t g/t g/t

FIG. 5. (Color online) Numerical results for the four-leg LTH model. We define the interaction strength g = g; = g, = g’ and perform
DMRG with the system size N' = 8M + 4 = 120. (a) AE; = E; — E| is the energy difference between the ground state and the ith excited
state for the four-leg LTH with open boundary conditions. (b) The entanglement spectrum of the ground state for the four-leg LTH with periodic
boundary conditions as a function of g/¢. The LTH model exhibits fourfold degeneracy for the ground state and the entanglement spectrum
when g/t is larger that the phase-transition point g./¢ =~ 0.83. (c) The central charge as a function of g/¢.

since each cut contributes twofold degeneracy from the wave
function (]0000) — [1111))/+/2 at the cut.

Figure 5(c) displays the central charge computed using
DMRG as a function of g/¢. Similar to the case of the two-leg
LTH model, it saturates at a size-independent value of ¢ = 1

2
when g = g.. This suggests that the phase transition in the

four-leg LTH model is in the transverse-field Ising universality
class. Understanding more fully the microscopic origin of this
transition is an interesting problem which we leave for future
study.

For topological crystalline insulators and superconductors,
the bulk topology is commonly determined by the presence
or absence of protected gapless modes at the boundary, that
are invariant under a spatial symmetry. However, this is not
the case for this interaction-enabled topological phase. Each
end of the LTH model, which maps onto the other under
inversion, is not invariant under inversion so the inversion
symmetry does not protect the Majorana end modes. Instead,
the LTH model inherits its topology from the class BDI in
1D, which hosts stable Majorana boundary modes protected
by time-reversal symmetry and particle-hole symmetry. The
presence of these Majorana boundary modes can be induced
by symmetry-preserving interactions even if the phase would
otherwise be trivial in the noninteracting system with the same
symmetries.

C. LTH-type models in dimensions 2 and 3

In two dimensions, the interaction-enabled phases are
possible in symmetry class BDI with an additional C,4 rotation
symmetry. In the noninteracting case with weak invariants
v, and vy in x and y directions, respectively, from 1D class
BDI, the symmetry requires v, =v, and v, = —v,. The
only solution is vy = v, =0 and all such systems must be
topologically trivial. In the interacting case, as before, the
1D classification changes to Zg and vy = vy, = 4 becomes
another possible solution of the above criterion indicating an
interaction-enabled topological phase. A similar argument can
be made for a 3D system with C4 rotation symmetry about
three orthogonal axes.

The 2D model we propose is depicted in Fig. 6. Similar
to the 1D case, it consists of alternating clusters of eight
interacting MZMs connected to one another by hoppings. To
understand the phase diagram of the model, we notice that in
the absence of interactions all the MZMs have counterparts
connected by hoppings ¢, and therefore the ground state is
unique with a gap 2 to all excitations. In particular, the edge
is also gapped. On the other hand, in the absence of hoppings
and in the presence of generic interactions within each cluster
containing eight Majoranas, the system is gapped in the bulk,

FIG. 6. (Color online) Proposed minimal geometry for an LTH-
type model in 2D. Red (blue) circles indicate MZMs of type « (B).
When the interaction dominates, the Majorana system in the bulk is
gapped. The edge states are either gapless or spontaneously symmetry
broken.
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FIG. 7. (Color online) Proposed minimal geometry for an LTH-
type model in 3D. Red (blue) spheres indicate MZMs of type « (B).
(a) The unit containing eight MZMs of both types. (b) The full 3D
structure. Notice that surfaces consist of purely a-type MZMs.

as all the clusters have nondegenerate gapped ground state. At
the same time, we notice that the system has gapless flat-band
edge states associated with the decoupled quartets of MZMs
that exist at the boundary. Each cluster of four Majoranas on
the edge has doubly degenerate ground state. These two ground
states are different by two Majorana operators, and therefore
are related by emergent time-reversal symmetry © that acts
anomalously in this subspace [43] such that @ = —1. Thus,
Kramers theorem applies and the edge state must either remain
gapless or spontaneously break the time-reversal symmetry
even away from the strongly interacting limit, as long as the
bulk remains gapped. In the latter case, it is doubly degenerate.
Indeed, we notice that if the hoppings are turned on, the
edge spectrum becomes gapped with a doubly degenerate
ground state. This can be seen as follows. The hoppings
will perturbatively generate additional interactions between
the neighboring quartets of MZMs along the edge, such as
that denoted in Fig. 6 as g,. Effectively, then, the edge is
described by a 1D interacting model discussed in Ref. [39]. In
the thermodynamic limit, the model has been shown to exhibit
a gapped doubly degenerate ground state.

A similar construction can be given for a 3D system. A
unit cell, containing eight MZMs of each type is displayed
in Fig. 7(a). When such unit cells are stacked to form a
cubic lattice, a 3D version of LTH-type model emerges
[Fig. 7(b)]. The discussion of its phases parallels the discussion

s-wave SC
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of the 2D case and we will not repeat it here. On that
same basis, we expect the model to exhibit two phases, one
topologically trivial for weak interactions and one topological
when interactions are strong. In the latter case, the bulk
once again is nondegenerate and gapped while the surfaces
perpendicular to the Cartesian axes are anomalous in that they
exhibit either gapless states protected by © or spontaneously
break ® and are then doubly degenerate and gapped.

D. Proposed experimental realizations of LTH-type models

We now discuss potential realizations of the interaction-
enabled phase for LTH-type models in dimensions 1 and
2. Our starting point is a thin film (or a flake) of an STI
whose surfaces have been made superconducting by coating
with a thin layer of an ordinary s-wave SC, such as Al or
Nb. When a perpendicular magnetic field B is applied to
this structure, vortices are induced in the top surface while
antivortices are induced in the bottom surface. MZMs bound
to these are our basic ingredients. We now imagine that both
surfaces are patterned with an array of holes in the SC layer
as indicated in Fig. 8. The holes serve two purposes: (i) they
pin vortices in the desired positions and (ii) they remove the
undesired low-energy Caroli-Matricon—de Gennes states that
would otherwise exist in the cores of vortices in the ordinary
SC. This way, vortex cores will only exist in the surface state
of the TI and will be located in the right spatial positions.
When the chemical potential p of the TI is tuned to the Dirac
point and when the TI film is sufficiently thin, then the hopping
amplitude ¢ will be appreciable only between MZMs located
in the adjacent vortices and antivortices, indicated by green
lines in Fig. 8. MZMs in the same surface are then connected
only through four-fermion interactions. If we furthermore take
into account only the dominant interaction terms that occur
between the quartets of MZMs that are closest together, then it
is easy to see how devices in Fig. 6 approximate the LTH-type
models in 1D [Fig. 6(a)] and 2D [Fig. 6(b)]. We note that by
layering the structure in Fig. 8(b) it is possible to envision
creating also the 3D model, but in that case it is not clear how
the pattern of hole might be fabricated to pin the vortices in
the interior layers.

We now show that the LTH models in this heterostructure
belong to reflection-symmetry class BDI +R__ [47] and a
pair of (anti)vortices preserves inversion symmetry, which

FIG. 8. (Color online) Proposed physical realizations of the LTH-type models in 1D and 2D. Superconductivity is induced in two surfaces
of a thin TI film. The SC coating is patterned to create an array of pinning sites for vortices which then form structures that approximate the
model geometries shown in Figs. 6 and 3. (a) A quasi-1D system respecting the inversion symmetry can be used to realize the four-leg LTH
model. (b) A 2D system with C, rotation symmetry that can be used to realize the LTH model in 2D.

075438-11



PIKULIN, CHIU, ZHU, AND FRANZ

is equivalent to reflection symmetry in 1D. Consider two
vortices located at positions (4b,0). The vortices we take
into account by specifying a position-dependent phase of the
pairing function

A = Nge' ), (48)

where 0y =tan~! -2, The pairing function is invariant

under inversion (x,);gb—> (—x, —y), while the 2D reflection
symmetry in any direction is broken. With A(R) = A(—R),
the Hamiltonian Hgg in Eq. (1) is invariant under inversion
operation

P~ Hex(—p, —R)P = Hx(p,R), (49)

where P = it%7?. Hence, we are able to construct 1D LTH
models with the distribution of vortices and antivortices
obeying A(R) = A(—R) in Fig. 8(a). To check the topo-
logical classification, let the reflection-symmetry operator
be Hermitian R = 0% and R anticommute with ® and E.
References [43,47] show that the topology of such a 1D
noninteracting chain in class BDI 4+ R__ is always trivial.

We denote a pair of two Majorana zero modes located,
respectively, at two (anti)vortices (£b,0) as ap,, o’ (85, B.;)
in2. They transformtoa’ ,, — ap(B”,. — Bp) underreflection
symmetry since in a spin-% system P? = —1.

Similarly, the setup of 2D LTH model can be designed
as shown in Fig. 8(b). The only difference is that each dot
now represents two MZMs. This can be arranged by designing
two pinning holes to be placed close to one another or else
following more closely the octagonal pattern design displayed
schematically in Fig. 6. In any case, the holes are arranged
so that the C, rotation symmetry is preserved. Furthermore,
the symmetry has to be checked microscopically. Consider
four vortices located at (£5,0) and (0, & b). The phase of the
pairing function coming from the four vortices is given by

A= Aoei(gd,0+9—d,0+90.d+90, -d) (50)
where 6.y, = ta.n’1 i Itis easy to check that the pair?ng
function is invariant under C, rotation symmetry operation

(x,y) = (y, —x). In addition, the Fu-Kane Hamiltonian is
invariant under Cjy:

C; ' Hrx[(y, —x),(py, —p:)]1Ca = Hrx[(x,),(px, py)],
(51

where Cy4 = %(]1—}—1'01). Hence, the design indicated in
Fig. 8(b) obeys the C4 symmetry and provides a possible

realization the 2D LTH model.
V. DISCUSSION AND CONCLUSION

Majorana zero modes bound to vortices in the SC surface of
a topological insulator present a unique opportunity to study

PHYSICAL REVIEW B 92, 075438 (2015)

the effect of strong interactions in a fermionic system. This
is because the kinetic energy of such fermions may be made
to vanish by tuning a single parameter, chemical potential p
of the underlying TI. The interactions between MZMs, even
if nominally not very strong, become the dominant energy
scale in the problem. We have suggested a specific setup to
experimentally probe the effect of MZM interactions on the
system’s ground and excited states. We have discussed how
to model 0D and 1D phases in this setup, and have proposed
extensions to higher dimensions. Following, we touch on the
immediate experimental relevance of the setup discussed.

The ingredients for the proposed setups are all in place.
Superconductivity has been successfully induced in the surface
state of the 3D TI by multiple groups [50-57]. The ability to
tune the chemical potential to the Dirac point as we require has
also been demonstrated [54—56]. Finally, vortices have been
imaged in such devices [57] and spectroscopic evidence for
MZMs in the cores of such vortices has been reported [58].
We note that in the latter experiment the chemical potential was
far away from the Dirac point so this specific system would
not work for the purpose we envision in this paper. However,
given the rapid pace of the experimental progress, we expect
this last obstacle to be overcome in the near future.

Once the above hurdle has been surmounted, not much
additional fabrication is required for our 0D Corbino ring
proposal discussed in Sec. III. We envision testing the effect of
interactions and the resulting Fidkowski-Kitaev Zg periodicity
before attempting to engineer the more complex 1D and 2D
structures. The OD system should provide a definitive signature
of the presence of the MZM interactions by changing the
periodicity of the occurrence of the zero-bias peak in the
tunneling conductance. The energy scales of few degrees
Kelvin we estimated show that the observation is possible
with the currently available technology.

An ambitious, longer-term goal will be to engineer the
1D and 2D LTH-type models perhaps based on the designs
outlined in Fig. 8 using the same technology. We note that aside
from creating the desired vortex patterns through artificial
pinning, it is possible to obtain them naturally as a Josephson
vortex lattice in a junction between two superconductors on
top of a TI [59]. Probing the electron degrees of freedom in
such systems is feasible using tunneling spectroscopy as has
been demonstrated recently [60,61].
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