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Abstract – It is generally thought that the adiabatic exchange of two identical particles is im-
possible in one spatial dimension. Here we describe a simple protocol that permits the adiabatic
exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The
exchange relies on the concept of “Majorana shuttle” whereby a π domain wall in the super-
conducting order parameter which hosts a pair of ancillary majoranas delivers one zero mode
across the wire while the other one tunnels in the opposite direction. The method requires some
tuning of parameters and does not, therefore, enjoy full topological protection. The resulting
exchange statistics, however, remain non-Abelian for a wide range of parameters that characterize
the exchange.

editor’s  choice Copyright c© EPLA, 2015

Introduction. – Exchange statistics constitute a fun-
damental property of indistinguishable particles in the
quantum theory. In three spatial dimensions general argu-
ments from the homotopy theory constrain the fundamen-
tal particles to be either fermions or bosons [1], whereas
in two dimensions exotic anyon statistics become possi-
ble [2]. In one spatial dimension it is generally believed
that statistics are not well defined because it is impossi-
ble to exchange two particles without bringing them to
the same spatial position in the process. Of special inter-
est currently are particles that obey non-Abelian exchange
statistics [3], both as a deep intellectual challenge and a
platform for future applications in topologically protected
quantum information processing [4]. Such particles can
emerge as excitations in certain interacting many-body
systems. In their presence the system exhibits ground-
state degeneracy and pairwise exchanges of anyons effect
unitary transformations on the ground-state manifold. For
non-Abelian anyons the subsequent exchanges in general
do not commute and can be used to implement protected
quantum computation.

The simplest non-Abelian anyons are realized by
Majorana zero modes in topological superconductors
(TSCs) [5–10]. In 2D systems they exist in the cores of
magnetic vortices while in 1D they appear at domain walls
between TSC and topologically trivial regions. Although
a number of theoretical proposals for 2D realizations of

a TSC have been put forward [11–16] the only credible
experimental evidence for Majorana zero modes thus far
exists in 1D semiconductor wires [17–24]. Since it is
thought impossible to exchange two Majorana particles
in a strictly 1D geometry, the simplest scheme to perform
an exchange involves a three-point turn maneuver in a
T-junction comprised of two wires [25] or an equivalent
operation [26–28] that effectively mimics a 2D exchange.
Such an exchange has been shown theoretically to exhibit
the same Ising statistics that governs majoranas in 2D sys-
tems. Experimental realization, however, poses a signifi-
cant challenge as it requires very-high-quality T-junctions
as well as exquisite local control over the topological state
of its segments. We note that proposals for alternative im-
plementations of Majorana exchange exist that are more
realistic [26] but still require complex circuitry with mul-
tiple quantum wires.

In this paper we introduce a simple protocol that allows
for an exchange of two majoranas in a 1D Kitaev wire [7].
The basic idea is illustrated in fig. 1 and relies on the
known fact that in the presence of an additional symme-
try, such as time reversal, a kink in a TSC wire (defined
as a π domain wall in the phase of the superconducting
order parameter) carries a protected pair of Majorana zero
modes [29–33]. As we show in detail below, under a wide
range of conditions such a kink acts as a transport vehi-
cle (“shuttle”) for the Majorana end modes. Specifically,
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Fig. 1: (Colour on-line) Majorana exchange in a 1D Kitaev
wire. (a) Schematic depiction of the system with the central
green region representing a TSC and outer regions an ordinary
superconductor. Panels (b)–(f) show the wave functions of the
two Majorana zero modes as the kink in Δ(s) (rendered in
green) sweeps the wire from left to right.

as the kink traverses the wire from left to right, it brings
along with the left-end mode (fig. 1(b), (c)). Meanwhile,
the right-end mode tunnels through the wire to its left end
(fig. 1(d), (e)) so that the end result is an adiabatic ex-
change of two Majorana zero modes (fig. 1(f)). We show
that this exchange satisfies the usual rules of the Ising
braid group, namely

γ1 �→ γ2, γ2 �→ −γ1. (1)

We also discuss various limitations of our exchange proto-
col and its possible physical realizations.

Results. – Consider a process in which a π domain wall
is nucleated in the quantum wire, fig. 1(a), to the left of
point L and is then transported to the right along the wire.
Initially, the domain wall is in the trivial superconductor
and we do not expect it to bind any zero modes. We model
this situation by the low-energy Hamiltonian

H0 = iεΓ1Γ2, (2)

where Γj denote the Majorana operators that we antici-
pate to become zero modes once the kink reaches the TSC
while ε is their energy splitting in the trivial phase. As
the kink approaches the topological segment of the wire
we expect two things to happen: i) Γj become zero modes,
meaning we should set ε → 0 and ii) since their wave func-
tions begin to overlap with the wave function of γ1, we
expect terms iγ1Γj to enter (2) with non-zero coefficients.

Since the Hamiltonian (2) is invariant under a rotation
in (Γ1, Γ2) space, i.e. Γ1 → Γ1 cosα + Γ2 sin α and Γ2 →
Γ2 cosα−Γ1 sin α we may, without loss of generality, select
α such that the resulting Hamiltonian reads

HI = iεΓ1Γ2 + it1γ1Γ2. (3)

This Hamiltonian reveals an important property of the
system that will be key to the functioning of our device:
as ε decays to zero and t1 ramps up to a non-zero value, the
zero mode denoted as γ1 originally positioned at L trans-
forms into zero mode Γ1 located at the kink. Physically,
the kink subsumes the Majorana zero mode and transports
it along the wire as illustrated in fig. 1(b), (c). This is the
key idea behind the Majorana shuttle.

As the kink approaches the center of TSC we can no
longer ignore coupling t2 to the other end mode denoted
by γ2. Indeed when the kink is exactly midway we expect
t1 = t2 on the basis of symmetry. The relevant Hamilto-
nian then becomes

HII = it1γ1Γ2 + it2γ2Γ2. (4)

As the kink advances along the wire and t1 declines while
t2 grows, the zero mode γ2 transforms into γ1. Physically,
the zero mode initially located at R tunnels across the
length of the TSC and reappears on the other side at L.

Finally, as the kink traverses into the trivial phase to the
right of the TSC, the pair of ancillary majoranas acquires
a gap and t2 reaches zero. We describe this by

HIII = iεΓ1Γ2 + it2γ2Γ2. (5)

As before, this shows that Γ1 transforms into γ2, complet-
ing the exchange.

The entire sequence of events can be described econom-
ically by a single Hamiltonian [34],

H(s) = i[t1(s)γ1 + t2(s)γ2 + ε(s)Γ1]Γ2, (6)

where s represents the kink position along the wire, in-
creasing from left to right. The spectrum of H(s) con-
sists of two exact zero modes and two non-zero energy
levels ±E(s) = ±√t21 + t22 + ε2. Since we expect Majo-
rana wave functions to decay exponentially at long dis-
tances a reasonable assumption inside TSC is ε(s) = 0 and
t1,2(s) ≈ t0e

(±s−l/2)/ξ, where l is the TSC length, ξ rep-
resents the decay length of the Majorana wave functions
and s is referenced to the TSC midpoint. This gives

E(s) ≈ 2t0e
−l/2ξ

√
cosh (2s/ξ). (7)

It is useful to write the three couplings as a vector
h(s) = (t1(s), t2(s), ε(s)), in spherical coordinates,

h(s) = E(s)(sin θ cosϕ, sin θ sinϕ, cos θ) (8)

with angles θ and ϕ dependent on s. The exchange can
thus be visualized as a path on the unit sphere, fig. 2(a),
parametrized by [θ(s), ϕ(s)]; the amplitude E(s) is unim-
portant as long as it remains non-zero.

The zero-mode operators γ(s) of the Hamiltonian (6)
satisfy [H(s), γ(s)] = 0 and correspond to two vectors
v1(s) and v2(s) orthogonal to h(s). They read

γ1(s) = γ1 cos θ cosϕ + γ2 cos θ sinϕ − Γ1 sin θ,

γ2(s) = −γ1 sin ϕ + γ2 cosϕ. (9)
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Fig. 2: (Colour on-line) Parameter path h(s) on the unit
sphere. (a) The path representing the Majorana shuttle
exchange, eq. (10). (b) An alternate exchange protocol dis-
cussed in the supplementary material given in [36]. The cov-
ered areas of these two coupling paths are π/2, which is an
essential factor of the exchange discussed in the “Methods”
section.

Of course any linear combination of γ1(s) and γ2(s) is also
a zero mode of H(s). The zero modes that solve the ap-
propriate time-dependent Schrödinger equation are those
linear combinations which make the non-Abelian Berry
matrix Aab = va · ∂svb vanish [35]. With this in mind
we can track the evolution of the zero modes as the cou-
plings change. We do this in three stages as described
by Hamiltonians HI, HII and HIII above. The spherical
angles evolve as

θ : 0 I−→ π

2
II−→ π

2
III−→ 0,

ϕ : 0 I−→ 0 II−→ π

2
III−→ π

2
, (10)

which implies, according to eq. (9), the following evolution
of the Majorana zero modes:

γ1(s) : γ1
I−→ −Γ1

II−→ −Γ1
III−→ γ2,

γ2(s) : γ2
I−→ γ2

II−→ −γ1
III−→ −γ1. (11)

We observe that the exchange protocol indeed implements
the Ising braid group, eq. (1).

The result shown in eq. (11) is a direct consequence
of the structure of the Hamiltonian (6) and is in that
sense exact. However, in the derivation leading to our
main result (11) we made an important assumption that
in Hamiltonian (6) γ2 only couples to Γ2. This is non-
generic because a term it′2γ2Γ1 is also allowed and cannot
be removed by a rotation in (Γ1, Γ2) space without gener-
ating additional undesirable terms. Such a coupling, when
significant, spoils the exact braiding property, eq. (11), be-
cause it shifts the Majorana zero modes to non-zero ener-
gies ±t′2 during step II. Parameter t′2 (like the remaining
parameters in H(s)) depends on Majorana wave function
overlaps and is therefore non-universal. In the following
we study a simple lattice model for a TSC and show that
the situation with |t′2| much smaller than all the other
relevant parameters can be achieved by tuning a single
system parameter such as the chemical potential μ or the
length l of the topological segment of the wire. The neces-
sity to tune t′2 to zero is the price one must pay in order
to exchange majoranas reliably in a 1D wire.

To put our ideas to the test we now study the π kink in
the prototype lattice model of TSC due to Kitaev [7]. It
describes spinless fermions hopping between the sites of a
1D lattice defined by the Hamiltonian

Hlatt =
∑

j

[
(−tc†

jcj+1 + Δj,j+1c
†
jc

†
j+1 + h.c.) − μc†

jcj

]
,

(12)
where Δj,j+1 is the superconducting order parameter on
the bond connecting sites j and j+1. For non-zero uniform
Δj,j+1 the chain is known to be in a TSC phase when
|μ| < |2t|. Here we study an open-ended chain with N
sites and a kink described as

Δj,j+1 =

{−Δ, j ≤ M,

+Δ, j > M.
(13)

In the limit of a long wire it is possible to find various zero-
mode wave functions analytically and from their matrix
elements derive the effective Hamiltonian, eq. (6). Since
the details of such calculations are tedious and not par-
ticularly illuminating we focus here on exact numerical
diagonalizations which convey the key information with
greater clarity. Figure 3(a), (b) shows the energy eigen-
values of Hlatt as a function of the kink position M for
two typical and physically distinct situations. The four
eigenvalues closest to zero (rendered in green and red) are
associated with the Majorana modes γ1, γ2, Γ1 and Γ2 dis-
cussed above. In fig. 3(a) we observe two near-zero modes
(red) and two modes at finite energy behaving as expected
from eq. (7). For these chosen parameters the system be-
haves in accordance with our effective low-energy theory
defined by the Hamiltonian H(s) in eq. (6). The inspection
of the associated wave functions indeed confirms the be-
havior indicated in fig. 1(b)–(f), fully consistent with the
Majorana shuttle concept. For a slightly shifted chemi-
cal potential μ fig. 3(b) shows that the zero modes are
lifted, indicating that coupling t′2 has become significant.
In this case the low-energy theory (6) does not apply and
the adiabatic exchange is compromised.

To better understand the interplay between the two
types of behavior contrasted in fig. 3(a), (b) we plot in
panel (c) the energy spectrum of Hlatt as a function of the
chemical potential for the kink fixed at the TSC midpoint
(M = N/2) where the difference is most pronounced. The
oscillatory behavior of the energy levels here reflects the
fact that in addition to the simple exponential decay, Ma-
jorana wave functions also exhibit oscillations at the Fermi
momentum kF of the underlying normal metal. These os-
cillations affect the wave function overlaps and thus influ-
ence the coupling constants in the effective Hamiltonian.
If we denote the two lowest non-negative eigenvalues of
Hlatt by E0(μ) and E1(μ) then, for the Majorana shuttle
to function, we require that

E0(μ) � E1(μ). (14)

When (14) is satisfied then one can perform the exchange
operation sufficiently fast compared to h̄/E0(μ) so that
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Fig. 3: (Colour on-line) Lowest-lying energy levels of the lattice Hamiltonian (12) with Δ = 0.1t and N = 50: (a) shown as a
function of the kink position M for μ = 0.185t and (b) for μ = 0.140t. The dashed line in panel (a) represents the best fit of
the second energy level to eq. (7) with t0 = 0.246t and ξ = 9.20. Panel (c) displays the same energy levels as a function of the
chemical potential μ with the kink fixed at the TSC midpoint M = 25. Panels (d), (e) illustrate possible physical realizations
of our device. The blue areas indicate SC electrodes with controlled phases φj , green is the quantum wire with Majorana end
modes indicated in red.

the small energy splitting between the zero modes does
not appreciably affect the result and at the same time
sufficiently slow compared to h̄/E1(μ) so that the condi-
tion of adiabaticity is satisfied and the system remains
in the ground state. If, on the other hand, E0(μ) and
E1(μ) are comparable, then such an operation becomes
impossible. In the wires used in the Delft experiment [19]
the size of the Majorana wave function ξ is thought to
be about 1/10 of the wire length l. When the kink is
near the wire midpoint one may thus crudely estimate
E1(μ) � t(l/2ξ)e−l/2ξ � 0.3Δ. Parameters in our numer-
ical simulations were chosen to yield comparable values.
One may similarly estimate the typical maximum value
of E0(μ) for the situation when μ is appropriately tuned.
This value would be zero in the ideal clean case and if
we ignore the mutual overlap of the end-mode Majorana
wave functions. Considering the latter to be non-zero, we
obtain E0(μ) � t(l/ξ)e−l/ξ � 0.0045Δ. We may thus
conclude that with the existing wires and under favorable
conditions the adiabaticity requirement E0(μ) � E1(μ)
can be satisfied with at least an order of magnitude to
spare.

The inspection of fig. 3(c) further reveals that a small
adjustment of the average chemical potential μ should
be sufficient in most cases to tune the system to satisfy
eq. (14). In essence, we require μ to be tuned close to one
of the zeroes μn of E0(μ). From fig. 3(c) one can deduce
a simple heuristic formula

E0(μ) � f(μ)min(| sin kF l|, | cos kF l|) (15)

with f(μ) a slowly varying envelope function. The zeroes
occur at kF l = π

2 n with n integer from which one can
infer the spacing between the successive values of μn as
δμ ≈ πμ/2N . We see that if μ is initially set at ran-
dom, for a long wire only a minute adjustment (achieved,
e.g., by gating) is required to bring it to the regime where
the adiabatic exchange using the Majorana shuttle pro-
tocol becomes feasible. In the supplementary material
given in [36] we furthermore show that the exchange pro-
tocol is robust with respect to moderate amounts of dis-
order in the chemical potential μ, hopping t and pairing

amplitude Δ. Specifically, the exchange occurs as long as
the fluctuations in the above parameters do not signifi-
canly exceed the average pairing amplitude Δ0.

Discussion. – The Majorana shuttle can be physically
realized by coupling a single semiconductor wire [17–23] to
a “keyboard” of superconducting electrodes as illustrated
in fig. 3(d). If one can control the phases φj of the in-
dividual electrodes (e.g. by coupling them to flux loops)
then a phase kink can be propagated along the wire in
steps, implementing the proposed exchange protocol. It
might be also possible to generate the kink by running a
current between the adjacent electrodes in a variant of the
setup discussed in [37]; large enough supercurrent should
produce a phase difference close to π owning to the fun-
damental Josephson relation I(Δφ) = I0 sin Δφ.

An even simpler physical realization follows from the
generalized exchange protocol discussed in the supplemen-
tary material [36]. There we demonstrate that, as a matter
of fact, an exchange of γ1 and γ2 is effected by any closed
parameter path h(s) in the Hamiltonian (6) provided that
i) it starts at the pole of the unit sphere, fig. 2 and ii) it
sweeps a solid angle π

2 . One such path, shown in fig. 2(b),
can be physically realized in a setup with only two SC elec-
trodes [38,39] indicated in fig. 3(e) by simply twisting the
phase of one of the electrodes by 2π (see supplementary
material in [36] for details). As before, we require that
end modes γ1 and γ2 couple to the same ancillary ma-
jorana, say Γ2, localized in the juction. In addition, for
the exchange to obey eq. (1), it is necessary that t1 = t2
to a good approximation, which can be implemented by
positioning the junction midway along the wire.

Finally, we note that a pair of ancillary majoranas is
also realized at a magnetic domain wall in the chain of
magnetic atoms deposited on the surface of a supercon-
ductor [33,40]. Our exchange protocol works equally well
in this situation, if a way can be found to manipulate the
domain wall.

Our considerations demonstrate that it is in principle
possible to exchange two Majorana fermions in a strictly
one-dimensional system. The price one pays for this is
the necessity to tune a single parameter (e.g. the global
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chemical potential) in the device. In the Majorana shut-
tle protocol one must in addition impose a symmetry con-
straint (such as the time reversal) to protect the Majorana
doublet at the domain wall but this condition is relaxed
in the Josephson junction implementation. Our proposed
protocol involves four majoranas, two of them ancillary
ones, and relies on the fact that a pair of exact zero modes
is preserved when only three of the four majoranas are mu-
tually coupled. In steps I and III of the exchange this is
guaranteed by virtue of the fourth majorana being spa-
tially separated from the remaining three. In step II one
must tune a parameter to achieve the decoupling of the
fourth majorana. In this respect our protocol is similar to
Coulomb-assisted braiding [26] but is potentially simpler
to implement because it involves only a single quantum
wire.

Methods. – Following the method employed in
ref. [26], we compute Berry’s phase of the ground states af-
ter a coupling cycle. Accumulation of the Berry phase can
be regarded as the result of the braiding operation [6]. Let
us rewrite the coupling Hamiltonian in eq. (6) in another
economical manner,

H = i(Xγ1 + Y γ2 + ZΓ1)Γ2, (16)

where X = E sin θ cosϕ, Y = E sin θ sin ϕ, and Z =
E cos θ. When the coupling is off, the four Majo-
rana fermions possess zero energy. The ground state
has fourfold degeneracy and can be represented by
|0〉, c†|0〉, d†|0〉, d†c†|0〉, where each fermionic operator
is formed by two Majorana operators c = (γ1 − iγ2)/2
and d = (Γ1 − iΓ2)/2. The coupling Hamiltonian can be
rewritten in this fermionic basis,

H = E

⎛
⎜⎜⎜⎜⎝

Z 0 0 −X − iY

0 Z −X + iY 0

0 −X − iY −Z 0

−X + iY 0 0 −Z

⎞
⎟⎟⎟⎟⎠.

(17)
Due to the conservation of fermionic parity, two blocks of
the Hamiltonian with different parities can be discussed
separately,

Heven = H∗
odd =

(
Z −X − iY

−X + iY −Z

)
. (18)

Turning on the coupling changes the ground-state degen-
eracy from fourfold to twofold. The two ground states
with energy −E in the even- and odd-parity sectors are
given by

|e〉 =
1√

2E(E − Z)

(
−E + Z

−X + Y i

)
, (19)

|o〉 =
1√

2E(E − Z)

(
−E + Z

−X − Y i

)
. (20)

Now we introduce differential forms to compute the
Berry phases. The Berry connections (〈Ψ|d|Ψ|〉) in even-
and odd-parity sectors are simply written as differential
one-forms [41]:

Aeven = −Aodd = − i(XdY − Y dX)
2E(E − Z)

, (21)

and the Berry curvatures (d〈Ψ|d|Ψ|〉), which are differen-
tial two-forms, are given by

dAeven =
i

2E3 (ZdX ∧ dY + XdY ∧ dZ + Y dZ ∧ dX)

=
i

2
sin θdθ ∧ dϕ. (22)

We note that E is not constant so dE2 = 2EdE =
2XdX+2Y dY +2ZdZ. After performing a closed loop op-
eration, the original ground states gain extra Berry phases,

|e′〉 = exp
(∮

C
Aeven

)
|e〉 = exp

(∫
dAeven

)
|e〉,

|o′〉 = exp
(∮

C
Aodd

)
|o〉 = exp

(∫
dAodd

)
|o〉. (23)

On the one hand, the line integrals become surface inte-
grals by Stokes’ theorem so 2i

∫
dAeven = −2i

∫
dAodd =∫

sin θdθ ∧ dϕ is the area covered by the coupling path on
the unit sphere. On the other hand, at the beginning of
the process θ = 0 so the initial ground states are given by

|e〉 = |0〉, |o〉 = c†|0〉. (24)

Reference [6] shows that when γ1 and γ2 braiding occurs,

|e′〉 = eiπ/4|e〉, |o′〉 = e−iπ/4|o〉. (25)

Using the relation between the final ground states |o′〉 =
(γ′

1 + iγ′
2)|e′〉, we have γ′

1 = γ2 and γ′
2 = −γ1. Therefore,

to achieve braiding between γ1 and γ2 in the coupling
process, the area

∫
sin θdθ ∧dϕ = π/2 is required by com-

paring the Berry phases in eq. (23).

∗ ∗ ∗
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