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We propose a platform for interacting topological phases of fermions with time reversal symmetry �̄ (such
that �̄2 = 1) that can be realized in vortex lattices in the surface state of a topological insulator. The constituent
particles are Majorana fermions bound to vortices and antivortices of such a lattice. We explain how the �̄

symmetry arises and discuss ways in which interactions can be experimentally tuned and detected. We show how
these features can be exploited to realize a class of interaction-enabled crystalline topological phases that have
no analog in weakly interacting systems.
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A theoretical understanding of the topological phases of
noninteracting fermions, now thought to be complete, gave us a
treasure trove of new materials over the past decade, including
the topological insulators (both two and three dimensions)
[1–4] and engineered topological superconductors with Majo-
rana zero modes [5–8]. The same theoretical framework also
opened new areas of inquiry, leading to concepts such as the
Weyl semimetals, axion insulators, and topological exciton
condensates that are actively pursued in experiments. When
strong interactions are included, the situation becomes more
complicated and the classification of topological phases less
well understood, especially for fermionic systems [9]. It is
expected that interacting systems could produce novel phases
with unusual properties, such as excitations with fractionalized
quantum numbers and unusual exchange statistics. Although
a number of specific interaction-enabled topological phases
with fermions have been theoretically proposed [10–18], the
only such phases that are known to exist in the real world are
the fractional quantum Hall states [19,20].

With the goal of enlarging the space of experimentally
accessible topological phases that depend for their existence
on strong interactions, we propose here a physical platform
that realizes the paradigm of fermions with time reversal
(TR) symmetry �̄ such that �̄2 = 1. Interacting fermions
with this property have been employed in seminal works by
Fidkowski and Kitaev (FK) [21], who showed how the integer
classification of their one-dimensional (1D) topological phases
in the noninteracting limit changes to Z8 classification when
interactions are included. More recently, Lapa, Teo, and
Hughes (LTH) [22] introduced a model with �̄ and an
additional inversion symmetry P . In this case, it turns out
that there are no topologically nontrivial 1D phases in the
absence of interactions. Remarkably, when interactions are
included, a topologically nontrivial phase becomes possible
(the interacting classification here is Z2). The latter, then, is a
genuine interaction-enabled topological phase that fundamen-
tally cannot exist in the noninteracting limit.

The TR symmetry that we have in mind acts on the spinless
fermion annihilation operator cj through an operator �̄ so that
�̄cj �̄

−1 = cj and �̄i�̄−1 = −i. If we decompose our Dirac
fermion into a pair of Majorana fermions cj = 1

2 (αj + iβj ), it
follows that

�̄αj �̄
−1 = αj , �̄βj �̄

−1 = −βj . (1)

In a �̄-invariant Hamiltonian expressed in terms of αj ,βj

operators only certain terms are allowed. For instance, bilinears
iαjβk are allowed while iαjαk and iβjβk are prohibited.
Similarly, four-fermion interaction terms with even numbers
of αj ’s are allowed, such as αjαkαlαm or βjβkαlαm, but
those with an odd number are not. Finding a physical
system whose Hamiltonian implements the above symmetry
constraints presents a challenge because electrons, the only
relevant fermions in solids, have spin 1

2 and the natural TR
operation � for such spinful fermions satisfies �2 = −1. The
important ideas [21–23] that involve fermions with �̄ such
that �̄2 = 1 have therefore remained largely untested (see,
however, the proposal in Ref. [24]). In what follows, we show
how the ingredients necessary to realize the phases envisioned
by FK and LTH can be realized in a concrete physical system
accessible with the available experimental methods.

A system we explore in this Rapid Communication is
similar to that studied in Ref. [25]—a superconducting (SC)
surface of a strong topological insulator (STI)—with one
extra ingredient. In addition to vortices, which are known
to harbor unpaired Majorana zero modes (MZMs) [26], we
include in our considerations antivortices which also contain
MZMs but, as we show, of a different type. Specifically, we
demonstrate that it is consistent to assign the two types of
Majorana fermions αj ,βj that obey Eq. (1) to vortices and
antivortices, respectively. Structures composed of vortices and
antivortices, arranged such that their corresponding Majorana
wave functions have nonzero overlaps, then implement �̄-
invariant fermionic Hamiltonians with �̄2 = 1. We discuss
various vortex/antivortex geometries that realize interacting
lattice models, including the LTH model [22] mentioned
above.

We now proceed to substantiate these ideas and claims.
The physical system, an STI with a superconducting sur-
face, is described by the Fu-Kane Hamiltonian [26] H =
∫

d2r�̂
†
rHFK(r)�̂r , where �̂r = (c↑r ,c↓r ,c

†
↓r , − c

†
↑r )

T
is the

Nambu spinor and

HFK = τ z( p · σ − μ) + τ x�1 + τ y�2. (2)

Here, σ ,τ are Pauli matrices in spin and Nambu spaces,
respectively, and � = �1 + i�2 represents the SC order
parameter. A single isolated vortex, expressed as �(r) =
�0(r)e−inϕ with ϕ the polar angle and n = ±1 corresponding
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to vortex or antivortex, respectively, is known to bind a
MZM [26]. The Hamiltonian (2) respects the particle-hole
symmetry C generated by 	 = σyτ yK (	2 = +1,K denotes
a complex conjugation) and, for a purely real gap function �,
also the physical TR symmetry � generated by � = iσ yK

(�2 = −1). In the presence of vortices � is broken, but in the
special case when μ = 0, the Hamiltonian respects a fictitious
TR symmetry �̄ with �̄ = σxτ xK (�̄2 = +1), even in the
presence of vortices [27]. From now on we focus on this μ = 0
“neutrality point” with an extra symmetry. Together, the two
symmetries 	 and �̄ define a BDI class with chiral symmetry
� = 	�̄ = −σ zτ z.

Eigenstates of the Hamiltonian (2) are four-component
Nambu spinors �(r) = (u↑,u↓,v↑,v↓)T . Because the particle-
hole symmetry C maps positive energy eigenstates to their neg-
ative energy partners, a nondegenerate zero mode HFK�0 = 0
is self-conjugate under C, that is, it obeys 	�0 = �0. This
constrains its components such that v↑ = u∗

↓ and v↓ = −u∗
↑.

In addition, because {HFK,�} = 0, the zero mode �0 must be
an eigenstate of �. There are two choices that satisfy these
conditions,

�
(+)
0 = (0,u↓,u∗

↓,0)T , �
(−)
0 = (u↑,0,0,−u∗

↑)T , (3)

corresponding to the two eigenvalues ν = ±1 of �. It is easy
to check that

�̄�
(±)
0 = ±�

(±)
0 , (4)

i.e., the two MZMs transform as even and odd under �̄. To
complete the argument, we construct the corresponding zero-
mode operators γ± = ∫

d2r�
(±)
0 (r)†�̂r . From Eqs. (3) and (4)

it follows that

γ
†
± = γ±, �̄γ±�̄−1 = ±γ±. (5)

The zero-mode operators are Majorana and the two types
transform in the opposite way under �̄. Now, suppose that
γ+ with a wave function �

(+)
0 resides in the core of a positive

n = 1 vortex (as can be verified by an explicit calculation
[25]). The physical TR symmetry � maps a vortex onto an
antivortex because the direction of superflow is reversed under
�. At the same time the corresponding operator � maps �

(+)
0

to �
(−)
0 . Antivortex thus necessarily carries the other type of

Majorana represented by γ−. Comparing Eqs. (5) and (1),
we conclude that vortices and antivortices in the Fu-Kane
model at neutrality carry MZMs that transform as even and
odd, respectively, under �̄ and can thus be assigned as αj ,βj

Majorana operators in models with �̄2 = 1. We note that these
results can be explicitly checked by a direct calculation of the
zero-mode wave functions [8] in Hamiltonian (2).

Systems in this symmetry class composed of only vortices
and no antivortices admit interaction terms of the form
gαjαkαlαm but no bilinear terms and are thus inherently
strongly interacting. Some models of this type have been
explored in Ref. [25]. When the system is slightly detuned
from neutrality, then �̄ is broken and bilinears it ′αjαk become
allowed with t ′ ∼ μ. In the following, we shall adopt an
assumption that μ has been tuned sufficiently close to zero
so that t ′ � g and we may thus neglect all bilinears prohibited
by �̄.

FIG. 1. (Color online) Ground state degeneracy in a cluster with
n vortices and generic interaction terms. Stars denote the presence or
absence of zero bias peaks in vortices observable by STM.

As our first example of interesting structures that can be
constructed with these ingredients, we consider a cluster made
with a small number n of vortices. As we shall argue, scanning
tunneling microscopy (STM) can be used to probe the effects
of interactions in such a small cluster by examining the vortex
core spectra for the presence or absence of MZMs. We envision
changing the total vorticity n of our cluster from 0 to 8
by adding vortices one by one to observe the theoretically
predicted Z8 periodicity [21,23] generated in the presence of
interactions. In the absence of interactions the ground state
has degeneracy 2n/2 and STM will observe a single MZM
in each vortex. When interactions are present, STM should
still see zero modes for n = 1,2,3 and for all odd values of
n, but the zero modes could generically split for even n � 4,
because an interaction term can be first constructed with four
Majorana operators. The pattern of ground state degeneracies
we obtain for a system of n vortices with generic interactions
allowed by �̄ is displayed in Fig. 1 and is consistent with
results of Ref. [23]. We find that MZMs, detectable by STM,
will be present for all n except when n = 4k with k integer.
This is to be contrasted with a noninteracting case with generic
hopping terms allowed (e.g., when μ �= 0); here, the ground
state degeneracy is

√
2(n mod 2) and zero bias peaks will be

seen for all odd n.
As an example of considerations that lead to Fig. 1, we

now discuss the special cases of an interacting system with
n = 4k. We start with n = 4, denote the Majorana operators as
α1,α

′
1,α2,α

′
2, and define complex fermions dl = 1

2 (αl + iα′
l).

Noting that iαlα
′
l = 2nl − 1 where nl = d

†
l dl is the number

operator, we may label the quantum states of the four Majorana
fermions in the cluster by the eigenvalues nl = 0,1 as |n1n2〉.
The most general interaction term h4 = gα1α2α

′
1α

′
2 splits

the fourfold degeneracy into an even parity ground state
doublet |00〉,|11〉 (for g > 0) and odd parity excited states
|01〉,|10〉. Because both ground states have the same parity,
single-electron tunneling will necessarily cause transitions to
the excited states and the STM peaks will appear at energies
±2g, not zero.

For n = 8 we consider a specific pattern displayed in
Fig. 2(a). This pattern is easy to analyze and also forms
the basic building block for the interaction-enabled LTH
topological crystalline phase that we shall discuss below. As
argued previously [25], the strongest interactions occur for
those groups of four Majorana fermions that are spaced most
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FIG. 2. (Color online) Vortex lattice geometries for interacting
Majorana models. Solid (open) circles represent vortices (antivor-
tices), while solid and dashed lines indicate hopping and interaction
terms, respectively, consistent with �̄. (a) Cluster of eight vortices.
(b) The four-leg LTH ladder invariant under both �̄ and P . Possible
experimental realizations are sketched in (c) and (d). In (c) the STI
surface is assumed to be superconducting and the thickness of the
STI sufficiently large so that the Majorana wave-function overlaps
occur predominantly in the surface. Under these conditions the setup
will realize the LTH ladder depicted in (b). In (d) the interactions take
place in the surfaces but tunneling is assumed to occur through the
bulk of the flake.

closely together. This is because the corresponding coupling
constants depend on the overlap of the exponentially decaying
Majorana wave functions. With this in mind, we identify
the dominant interaction terms associated with the square
plaquettes in Fig. 2(a) described by

h� = g1(α1α
′
1α2α

′
2 + α3α

′
3α4α

′
4) + g2α2α

′
2α3α

′
3. (6)

For g1,g2 > 0 the ground state of h� is doubly degenerate,
spanned by eigenvectors |0000〉 and |1111〉 in the same
notation as above. The energy is Eg = −2g1 − g2. The
subdominant interaction term is associated with two straight
legs,

h| = g′(α1α2α3α4 + α′
1α

′
2α

′
3α

′
4). (7)

It is easy to see that the inclusion of h| splits the ground state
doublet of h� into a bonding/antibonding pair with |ψ±〉 =
(|0000〉 ± |1111〉)/√2. For g′ > 0 the unique ground state of

h8 = h� + h| (8)

is |ψ−〉, while |ψ+〉 is the first excited state with energy 4g′.
Now consider the four-leg chain depicted in Fig. 2(b). This

is a version of the LTH model [22] that can be constructed
using our platform. It consists of alternating clusters of eight
vortices and antivortices, each described by the interacting
Hamiltonian h8(α2j ) and h8(β2j+1), connected by nearest-
neighbor hopping terms with amplitude t . Here, α2j denotes
the octet of {αl,α

′
l} operators in cluster 2j and the same for

β2j+1. The Hamiltonian then reads

HLTH =
N∑

j=−N

h8(α2j ) +
N∑

j=−N−1

h8(β2j+1) + h
edge
|

−it

N+1∑

j=−N−1

(α′
l,2jβl,2j+1 + β ′

l,2j−1αl,2j ), (9)

where h
edge
| has a form indicated in Eq. (7) and describes the

four dangling Majoranas at the two ends of the chain. The
Hamiltonian (9) respects �̄ as well as the inversion symmetry
P . The latter is generated by {αl,j ,α

′
l,j } → {α′

l,−j ,αl,−j } and
{βl,j ,β

′
l,j } → −{β ′

l,−j ,βl,−j }.
Without interactions, there exist no topologically nontrivial

phases in a system with these symmetries [22]. Indeed, we see
that when g1 = g2 = g′ = 0 and t �= 0, the system breaks up
into a set of local dimers formed by αβ products on the dashed
bonds in Fig. 2(b). The ground state is unique with a gap 2t to
the lowest excitation and clearly topologically trivial.

In the opposite limit, t = 0 and g1 � g2 > g′ > 0, the
ground state is a direct product of |ψ−〉j states on each cluster
j . If we impose periodic boundary conditions, the ground state
is unique with a gap 4g′ to the lowest excited state. However,
for an open chain that preserves the symmetries, as the one
indicated in Fig. 2(b), there is a fourfold degeneracy associated
with h

edge
| . The four independent quantum states associated

with the quartet of αl Majoranas at each end are split by h
edge
|

into a doubly degenerate ground state (with even local parity)
and a doubly degenerate excited state (with odd parity). As
noted in Ref. [22], �̄ connects the two degenerate ground
states, but its action in this subspace is anomalous with �̄2 =
−1. The edge modes therefore comprise two effective spin- 1

2
degrees of freedom and constitute fractionalized excitations
analogous to those appearing in spin-1 Haldane chains [28,29].
In a long chain the edge degeneracy is therefore protected by
the Kramers theorem and cannot be removed by any local
perturbation preserving �̄. It signals a topological phase, one
that fundamentally cannot exist in a noninteracting system. If
we turn on a small hopping t , the topological phase should
persist up to a critical strength tc of order g′, at which point a
phase transition occurs to the trivial phase.

We have confirmed the above picture by performing exact
numerical diagonalizations of HLTH; the results are displayed
in Fig. 3. Our simulations with periodic boundary conditions
[Fig. 3(a)] indicate a phase transition marked by the excitation
gap closing at gc � 0.81t , obtained by extrapolating the energy
minimum to Lx → ∞. Figure 3(b) confirms that with open
boundary conditions the ground state is unique for g < gc but
becomes fourfold degenerate for g > gc with all ground states
in the same parity sector, in accord with our expectation for
the interaction-enabled topological phase.

As explained in the Supplemental Material [30], a system
described by the LTH Hamiltonian (9) can be regarded as a “4e

superconductor.” (This is because it breaks the fermion number
conservation symmetry while all the anomalous expectation
values that are bilinear, such as 〈d1d2〉, vanish.) The authors of
Ref. [22] proposed to look for physical realizations of such a 4e

superconductor in certain pair density wave systems, discussed
theoretically in the context of underdoped high-Tc cuprate
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FIG. 3. (Color online) Excitation energies of the LTH Hamil-
tonian (9) obtained by exact numerical diagonalization. (a) The
lowest excitation energy in a system of length Lx = 4,8,12 with
periodic boundary conditions. (b) Several lowest excitation energies
for Lx = 8 and open boundary conditions. We take g1 = g2 = g′ ≡ g

and the energies are in the units of t .

superconductors [31]. Whether or not such a phase exists in
real materials remains to be seen. Our proposed realization
of the LTH model, on the other hand, relies on ingredients
that are known to exist. Specifically, SC order in the surface
state of an STI has been experimentally observed by a number
of groups [32–42]. In some cases the chemical potential has
been tuned to the close vicinity of the Dirac point [39,40], as
required for models with symmetry �̄. Vortex cores [42], and
the expected MZMs, have also been imaged [43]. Assembling
vortices into regular structures, controlling their geometry, and
reliably probing the zero modes remains a challenge, but it
is one that does not seem insurmountable given the recent
progress.

In the near term it should be possible to probe the effects
of interactions in small clusters of vortices by STM, as

we discussed. The relevant energy scale can be quite large,
∼10 meV, under favorable conditions [25] and should permit
observation of the interaction-induced Z8 periodicity. To
engineer the LTH model, the key challenge will be to assemble
stable arrays containing both vortices and antivortices in close
proximity to one another. We note that such structures have
been observed to occur spontaneously in mesoscopic SC
samples with certain geometries [44]. Alternately, one can
leverage the fact that in a thin STI/SC film or flake a uniform
perpendicular field B will produce vortices on the top surface
and antivortices on the bottom surface. Figures 2(c) and 2(d)
outline two possible experimental realizations of the LTH
vortex/antivortex lattice exploiting this principle [45].

The interaction-enabled topological phases discussed in
this work are gapped and therefore robust with respect to
moderate amounts of symmetry-preserving disorder. Specif-
ically, disorder in vortex positions does not break �̄ and is
therefore innocuous. It also follows that fine details of the
geometry sketched in Figs. 2(a) and 2(b) are unimportant as
long as �̄ and P are preserved to a good approximation.
Any experimental realization that reasonably approximates
the proposed model geometry should show the topological
phase. Local fluctuations in the chemical potential break �̄,
but we expect the gapped phases to remain robust as long as
the symmetry is preserved on average and the fluctuations do
not exceed the gap amplitude [30,46].
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