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Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial
topological character of the wave functions. In many cases, these topological band degeneracies give rise to
exotic surface states and unusual magnetotransport properties. In this paper, we present a complete classification
of all possible nonsymmorphic band degeneracies in hexagonal materials with strong spin-orbit coupling. This
includes (i) band crossings protected by conventional nonsymmorphic symmetries, whose partial translation is
within the invariant space of the mirror/rotation symmetry; and (ii) band crossings protected by off-centered
mirror/rotation symmetries, whose partial translation is orthogonal to the invariant space. Our analysis is based
on (i) the algebraic relations obeyed by the symmetry operators and (ii) the compatibility relations between
irreducible representations at different high-symmetry points of the Brillouin zone. We identify a number of
existing materials where these nonsymmorphic nodal lines are realized. Based on these example materials, we
examine the surface states that are associated with the topological band crossings. Implications for experiments
and device applications are briefly discussed.
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I. INTRODUCTION

The study of semimetals with protected band degeneracies
near the Fermi level has attracted a lot of interest in recent years,
due their unique transport and topological properties [1–5]. A
multitude of new kinds of semimetals has been discovered,
which includes Weyl semimetals [6–8], Dirac semimetals
[9–11], and various types of nodal-line semimetals [12–16].
With these discoveries, it has become clear that topology
in combination with symmetry offers a useful organizing
principle of semimetals. Major strides have been made in
developing topological classifications of semimetals using
K-theory [17–21], symmetry-based indicators [22–25], and
compatibility relations between irreducible representations
[26–29]. These efforts have helped to group the semimetals into
categories sharing common characteristics, and moreover they
have pointed the way toward the discovery of new topological
materials [30,31].

Yet, a unified all-encompassing classification of semimet-
als, which combines the symmetries of the tenfold way [1]
with crystalline space-group symmetries, is still lacking. Such
a complete enumeration of all possible semimetallic phases
of matter would be a major milestone in the theory of solids.
The derivation of a full classification represents, however, a
formidable challenge, for which it will be likely necessary to

not only apply, but also expand sophisticated mathematical
tools, such as twisted equivariant K-theory [32]. To make
progress toward this goal, it is useful to first focus on a subset of
all possible crystalline symmetries and to study the topological
band degeneracies on a case-by-case basis. This can give
insight into the mechanisms protecting band degeneracies and
will allow us to build intuition about the classification patterns.

Motivated by these considerations, in this paper we classify
topological band crossings in hexagonal materials with time-
reversal symmetry and strong spin-orbit coupling. We focus on
the role played by nonsymmorphic symmetries, which lead to
symmetry-required band degeneracies along high-symmetry
lines, or within high-symmetry planes, of the Brillouin zone
(BZ) [33–43]. While such an analysis has recently been per-
formed to some degree for cubic, tetragonal, and orthorhombic
space groups (SGs) [26,37–40], nonsymmorphic hexagonal
symmetries have not been considered before. Nonsymmorphic
hexagonal SGs are special, because they contain sixfold screw
rotations, which, as we will see, lead to multiple band cross-
ings with an accordion-like dispersion (cf. Fig. 3). Another
advantage of hexagonal materials is that they are usually easy
to cleave, which makes them amenable to surface-sensitive
probes, such as scanning tunneling microscopy or photoemis-
sion spectroscopy. Also, note that nearly all known topological
insulator materials are hexagonal or rhombohedral [44]. We
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TABLE I. Classification of nonsymmorphic band crossings in hexagonal materials with time-reversal symmetry and strong spin-orbit
coupling. The first column lists the nonsymmorphic space groups that exhibit topological band crossings. The second and third columns indicate
the high-symmetry lines and planes in which type-(i) nodal points and nodal lines appear, respectively. For a definition of the coordinate system
and high-symmetry labels in the hexagonal Brillouin zone, see Fig. 1. The values in the parentheses denote the number of bands that form a
connected group with protected nodal points. The high-symmetry planes that host type-(ii) nodal lines, protected by off-centered symmetries,
are given in the fourth column. The fifth column lists the electron fillings for which a band insulator is possible; see Sec. II D. Here, mN denotes
the set {m,2m,3m, . . . }. Some example materials that realize the predicted band crossings are listed in the last column.

Space group Type (i) nodal points Type (i) nodal lines Type (ii) nodal lines Filling constraint Materials

169 (P 61) ��A (12), MUL (4) 12N γ -In2Se3

170 (P 65) ��A (12), MUL (4) 12N
171 (P 62) ��A (6) 6N
172 (P 64) ��A (6) 6N
173 (P 63) ��A (4), MUL (4) 4N
176 (P 63/m) kz = π 4N LaBr3

178 (P 6122) ��A (12), MUL (4) 12N AuF3

179 (P 6522) ��A (12), MUL (4) 12N
180 (P 6222) ��A (6) 6N
181 (P 6422) ��A (6) 6N
182 (P 6322) ��A (4), MUL (4) 4N
188 (P 6̄c2) kxkz plane 4N LiScI3

190 (P 6̄2c) kx = π 4N ZrIrSn

study two different types of band degeneracies: (i) twofold-
degenerate band crossings guaranteed by conventional
nonsymmorphic symmetries [26,37–39], whose partial trans-
lation is parallel to the invariant space of the point-group sym-
metry, and (ii) fourfold degeneracies protected by off-centered
symmetries, whose partial translation is perpendicular to the
invariant space of the point-group symmetry [40,41,43]. These
twofold- and fourfold-degenerate topological band crossings
can give rise to a range of exotic phenomena, including arc
and drumhead surface states, quantum anomalies [45–47],
anomalous magnetoelectric responses [37], and transverse
topological currents [47].

We classify both types of band crossings on a case-by-
case basis by computing the algebraic relations obeyed by
the symmetry operators. For the SGs with type-(i) band
degeneracies, we also determine the compatibility relations
between irreducible symmetry representations. We find that
the band connectivities that follow from these compatibility
relations are consistent with our results based on the algebraic
relations of the symmetry operators. It should be noted,
however, that type-(ii) band crossings cannot be derived from
the compatibility relations in a straightforward manner. Band
crossings protected by off-centered symmetries are therefore
missing in classification schemes that build on the theory
of irreducible (co)representations of crystallographic SGs
[26–29]. The results of our classification program are summa-
rized in Table I. We find that there are two hexagonal SGs with
type-(i) degeneracies forming Weyl nodal lines, ten hexagonal
SGs with type-(i) degeneracies forming Weyl nodal points, and
one hexagonal SG with type-(ii) Dirac nodal lines. Hence, in
total there are 13 hexagonal SGs with nonsymmorphic band
crossings. We note that these band crossings are required
by the symmetries alone, regardless of the details of the
particular crystal structure and composition. In other words,
the nonsymmorphic nodal lines cannot be annihilated while
preserving the SG symmetries. This is in contrast to accidental
nodal lines [12–14], which are only perturbatively stable and

can therefore be annihilated by large symmetry-preserving
perturbations.

A secondary but equally important goal of this paper is to
identify materials that exhibit the predicted band crossings. For
this purpose, we use the Inorganic Crystal Structure Database
(ICSD) from FIZ Karslruhe [48] to look for materials with
the SGs listed in Table I. We identify a number of suitable
compounds, for example AuF3 and γ -In2Se3, which exhibit
Weyl band crossing points with accordion-like dispersions,
and LaBr3, which shows fourfold-degenerate band crossings
with a starlike shape. The topological properties of these band
degeneracies manifest themselves at the surface in terms of arc
and drumhead surface states. To exemplify this, we compute
the surface states of AuF3 and show that there exist a number
of arc states that connect the projected Weyl points of the
accordion-like dispersion.

The remainder of the paper is organized as follows. In Sec. II
we classify band crossings protected by conventional nonsym-
morphic symmetries. We consider both nodal points (Sec. II A)
and nodal lines (Sec. II B). The band connectivities that follow
from the compatibility relations between different irreducible
representations are discussed in Sec. II C. Section III is devoted
to the classification of band crossings protected by off-centered
symmetries. In Sec. IV we present a few example materials that
realize the predicted band crossings near the Fermi energy, and
we discuss their surface states. Conclusions and perspectives
are given in Sec. V. Some technical details are relegated to
Appendixes A and B. Appendix C contains additional band-
structure calculations of the example materials.

II. BAND CROSSINGS PROTECTED BY CONVENTIONAL
NONSYMMORPHIC SYMMETRIES

Nonsymmorphic space groups contain symmetry operators
G = {g|t} that combine point-group symmetries g with trans-
lations t by a fraction of a Bravais lattice vector [28]. In the
absence of additional symmetries whose point of reference is
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different from g, the fractional translation t can be assumed
to satisfy gt = t. This is because any component of t that is
not invariant under g can be removed by a suitable choice of
reference for g. In this section, we focus on these types of
nonsymmorphic symmetries, which we call “conventional.”
(The case in which there are additional symmetries whose
points of reference are different from g will be discussed in
Sec. III.) Applying such a nonsymmorphic symmetry n times
yields an element of the lattice translation group [28,49], i.e.,

Gn = {gn|nt} = −p Ta, p ∈ {1,2, . . . ,n − 1}, (2.1)

where g is an n-fold point-group symmetry and Ta is the
translation operator for the Bravais lattice vector a. The minus
sign on the right-hand side of Eq. (2.1) originates from gn,
which equals −1 for Bloch electrons with non-negligible
spin-orbit coupling.

In the band structure of nonsymmorphic materials, the oper-
ators G = {g|t} can lead to the protection of band degeneracies
in the g-invariant space of the BZ, which satisfies gk = k. In
these symmetry invariant lines and planes of the BZ, the Bloch
states |ψm(k)〉 can be constructed in such a way that they are
simultaneous eigenfunctions of both G and the Hamiltonian.
From Eq. (2.1) it follows that the eigenvalues of G are

G|ψm(k)〉 = eiπ(2m+1)/ne−ipk·a/n|ψm(k)〉, (2.2)

where m ∈ {0,1, . . . ,n − 1}. Due to the momentum-dependent
phase factor e−ipk·a/n in Eq. (2.2) the eigensectors of G can be
interchanged, as k is moved across the g-invariant space of
the BZ. As a consequence, provided there are no additional
degeneracies due to other symmetries, pairs of bands must
cross at least once within the invariant space. This is the
basic mechanism that leads to the protection of type-(i) band
degeneracies [34–39], which we are now going to discuss
for the hexagonal space groups. The relevant nonsymmorphic
symmetries that need to be considered for this purpose are as
follows: sixfold screw rotations C6,p of the form

C6,p : (x,y,z) → (
x − y,x,z + p

6

)(√
3

2 σ0 − i
2σz

)
, (2.3)

and twofold glide mirrors M of the form

M : (x,y,z) → ( − x,y,z + 1
2

)
iσx, (2.4)

where the Pauli matrices σi operate in spin space. (See Fig. 1
for the definition of the coordinate system.) The screw rotations
C6,p protect nodal points within rotation invariant lines, while
the glide mirrors M guarantee the stability of nodal lines within
mirror invariant planes.

A. Weyl nodal points

Nodal points occur along the�-�-A andM-U -L lines of the
hexagonal BZ, which are left invariant by the screw rotations
C6,p and C3

6,p, respectively. Let us discuss these two cases
separately. It should be noted that nodal points discussed in
this section can in certain cases be part of Weyl nodal lines.
An example of this is presented in Sec. IV A 1.

1. M-U-L

The M-U -L line is defined as the segment k = (π,0,kz),
with kz ∈ [0,π ], which connects the two time-reversal

FIG. 1. Left: bulk Brillouin zone for the hexagonal space groups,
showing symmetry labels for high-symmetry lines and points. Right:
surface Brillouin zone for surfaces perpendicular to the (010)
direction.

invariant momenta (TRIMs) M and L along the kz direction;
see Fig. 1. This line segment is left invariant under the twofold
rotation C3

6,p, up to a reciprocal-lattice translation. Hence, the
Bloch bands |ψm(k)〉 within this segment can be chosen to be
simultaneous eigenstates of C3

6,p with eigenvalues

C3
6,p|ψ±(k)〉 = ±ie−ipkz/2|ψ±(k)〉, (2.5)

which follows from Eq. (2.2) with n = 2 and a = (0,0,1).
Due to the presence of spin-orbit coupling, the energy bands
|ψm(k)〉 are in general nondegenerate, except at TRIMs (i.e.,
at M and L), where time-reversal symmetry enforces Kramers
degeneracies. From Eq. (2.5), we find that at the M point
C3

6,p has eigenvalues ±i for all p, while at the L point the
eigenvalues are ±i for p even and ±1 for p odd. At the M and
L points, time-reversal symmetry pairs up bands whose C3

6,p

eigenvalues are complex-conjugate pairs. Therefore, Kramers
partners at the M point have opposite C3

6,p eigenvalues, while
at the L point they have the same eigenvalues for p odd and
opposite eigenvalues for p even. In the absence of additional
symmetries, this leads to the band connectivity diagrams shown
in Fig. 2. For p odd, we see that there are four bands forming

FIG. 2. Band connectivity diagrams for the M-U -L line of the
hexagonal BZ, which is left invariant under the screw rotation C3

6,p .
Panels (a) and (b) show the connectivities in the presence of a C3

6,p

symmetry with p odd and even, respectively. The color scale indicates
the screw rotation eigenvalues (2.5) of the Bloch bands for (a) p = 1
and (b) p = 2. The bands are Kramers degenerate at the time-reversal
invariant momenta M and L.
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FIG. 3. Band connectivity diagrams along the �-�-A line, which is left invariant under the sixfold screw rotation C6,p . Panels (a), (b),
and (c) show the connectivities in the presence of C6,p with (a) p = 1, (b) p = 2, and (c) p = 3. The colors represent the C6,p eigenvalue
labels m of the Bloch bands |ψm(k)〉; see Eq. (2.6). At the time-reversal invariant momenta � and A, the bands form Kramers pairs (black
dots). The numbers next to the black dots indicate the C6,p eigenvalue labels m of the two Kramers partners; cf. Table II. For p = 4 and 5, the
band connectivity is the same as for p = 1 and 2, respectively, although the band pairings at the time-reversal invariant momenta are different;
cf. Table II.

a connected group, which must cross at least once, leading to
Weyl point degeneracies with an hourglass dispersion [36]. For
p even, on the other hand, only two bands form a connected
group without any symmetry-enforced crossings.

From the above considerations, we expect that materials in
SGs containing C̃6,p screw rotations with p odd have band
crossings along the M-U -L line. However, some of these
SGs contain additional symmetries that lead to extra band
degeneracies. In particular, mirror and inversion symmetries
enforce extra degeneracies at the L point, between bands with
C3

6,p eigenvalues +1 and −1. Therefore, in the presence of
additional mirror or inversion symmetries, the band crossing
along the M-U -L line is no longer symmetry-required. In con-
clusion, we find that only those materials with SGs containing
a C̃6,p screw rotation with p odd, but no inversion or mirror
symmetry, exhibit the Weyl degeneracies within the M-U -L
line. These are the SGs with Nos. 169, 170, 173, 178, 179, and
182, as indicated in the second column of Table I.

2. �-�-A

The path �-�-A is defined as the segment k = (0,0,kz),
with kz ∈ [0,π ], which connects the � point at the center of the
BZ to the A point at the top surface of the BZ; see Fig. 1. Since
this path is invariant under the sixfold screw rotation C6,p, we
can label the Bloch states within �-�-A by the eigenvalues of
C6,p, i.e.,

C6,p|ψm(k)〉 = eiπ(2m+1)/6e−ipkz/6|ψm(k)〉, (2.6)

where the eigenvalue label m runs from 0 to 5; cf. Eq. (2.2).
Due to Kramers theorem, time-reversal symmetry enforces
degeneracies at the TRIMs � and A, between bands whose
C6,p eigenvalues are complex-conjugate pairs. Using Eq. (2.6),
we find that at the � point bands with the eigenvalue labels
(0, 5), (1, 4), and (2, 3) form Kramers partners, independent
of p. At the A point, on the other hand, the way in which
the bands pair up into Kramers partners depends on the value
of p, as specified in Table II. We observe that for p �= 0 the
bands pair up in different ways at the � and A points. As a
consequence, the Kramers pairs must switch partners between
� and A, which, in the absence of additional symmetries, leads

to a nontrivial band connectivity. For p = 1 and 5 we find that
there are 12 bands sticking together with an accordion-like
dispersion, as shown in Fig. 3(a). These 12 bands have to cross
at least five times, forming five Weyl point degeneracies. For
p = 2 and 4, six bands stick together with a minimum number
of two crossing points [Fig. 3(b)], while for p = 3 four bands
form at least one Weyl point degeneracy [Fig. 3(c)]. In general,
one can show that for 2k bands forming a connected group,
the minimum number of crossings is k − 1. This is proven
in Appendix A using mathematical induction. We note that
the bands that cross at the Weyl points have different C6,p

eigenvalues, which prevents hybridization between them. In
addition, the Weyl points are protected by a nonzero Chern
number, which gives rise to Fermi arcs at the surface, as will
be demonstrated in Sec. IV.

From the above analysis, it follows that materials in SGs
with C6,p screw rotations can have protected Weyl point
degeneracies along the �-�-A line. However, some of these
SGs contain in addition to C6,p also inversion or mirror
symmetries, which create fourfold (or higher) degeneracies
at the A point, thereby removing the symmetry-enforced
Weyl crossings. Therefore, only materials in SGs with C6,p

symmetries, but no mirror or inversion symmetry, display the

TABLE II. This table specifies the way in which the Bloch bands
|ψm(k)〉 pair up into Kramers partners at the A point of the BZ in
materials with a sixfold screw rotation symmetry C6,p . The pairing
depends on p, i.e., the translation part of the screw rotation. The
two C6,p eigenvalue labels m of the Kramers pairs at the A point are
indicated in the second column.

p Pairings of m

0 (0,5), (1,4), (2,3)
1 (0,0), (3,3), (1,5), (2,4)
2 (0,1), (2,5), (3,4)
3 (1,1), (4,4), (0,2), (3,5)
4 (0,3), (1,2), (4,5)
5 (2,2), (5,5), (0,4), (1,3)
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FIG. 4. Weyl nodal lines protected by glide mirror symmetries
M (2.4) for (a) SG No. 188 and (b) SG No. 190. The colored areas
represent mirror-invariant planes. The bands are Kramers degenerate
at the time-reversal invariant momenta (TRIMs) (blue and red dots).
In SG No. 188 the nodal lines enclose two TRIMs. In SG No. 190 there
is at least one nodal line within the kx = π plane, enclosing a single
TRIM. There are different possibilities for the shape and connectivity
of the nodal lines. Here we only show the simplest one. Note that in SG
No. 190 there is in general no symmetry-enforced nodal line within
the kx = 0 plane, since the bands at the A point can be fourfold-
degenerate, since the corresponding irreducible representations can
have dimension d = 4.

discussed Weyl points at the �-�-A line. The SGs that satisfy
these criteria are Nos. 169-173 and 178-182, as listed in Table I.

B. Weyl nodal lines

Nodal lines protected by glide mirror symmetries M ,
Eq. (2.4), occur within mirror-invariant planes of the hexagonal
BZ [50]. Within these planes, the Bloch bands can be chosen to
be eigenstates of the glide mirror operator M with eigenvalues

M|ψ±(k)〉 = ±ie−ikz/2|ψ±(k)〉, (2.7)

which follows from Eq. (2.2). Mirror invariant planes contain
either two or four TRIMs at which the Bloch bands are Kramers
degenerate; see the blue and red dots in Fig. 4. It follows from
Eq. (2.7) that at the A and L points the M eigenvalues are
+1 and −1, while at the � and M points they are +i and
−i. At � and M , time-reversal symmetry enforces Kramers
degeneracies between pairs with opposite M eigenvalues (blue
dots), while at A and L Kramers pairs are formed between
bands with the same M eigenvalues (red dots). This leads to
a similar band connectivity as in Sec. II A 1; cf. Fig. 2. That
is, along any one-dimensional path within a mirror invariant
plane, connecting �/M to A/L, there must be at least one band
crossing. Therefore, the mirror invariant planes must contain
Weyl line degeneracies, as shown in Fig. 4. The shape of these
nodal line crossings is restricted by time-reversal symmetry,
which requires that each nodal line consists of pairs of Bloch
states that are related by time-reversal symmetry. Due to these
requirements, each nodal line must enclose one or two TRIMs
within the mirror plane.

The discussed nodal lines only occur if there are no extra
degeneracies at the TRIMs due to additional symmetries. We
find that the screw rotations C6,p or inversion lead to extra
degeneracies at the L and A points between bands with M

eigenvalues +1 and −1. Hence, in the presence of these sym-
metries, the L and M points become fourfold-degenerate, such
that the line crossings are no longer enforced by symmetry.

Therefore, only materials in SGs with glide mirror symmetries,
but no inversion or C6,p symmetry, exhibit the predicted line
crossings. The only SGs that satisfy these criteria are Nos.
188 and 190 [51]. SG No. 188 (P 6̄c2) contains a glide mirror
symmetry M that leaves the kxkz plane invariant; see Fig. 4(a).
This plane contains four TRIMs: two where the Kramers
partners have the same M eigenvalues (red dots), and two
where they have opposite eigenvalues (blue dots). Using the
above arguments, we find that there must exist nodal lines
within the kxkz-plane, which enclose two of the four TRIMs,
as shown in Fig. 4(a). The mirror glide symmetry M in SG
190 (P 6̄2c), on the other hand, leaves two planes invariant,
namely the kx = 0 and kx = π planes; see Fig. 4(b). Both of
these mirror planes contain two TRIMs: one where the two
Kramers partners have the same M eigenvalues (red dots), and
one where they have opposite eigenvalues (blue dots). From
our analysis it follows that both mirror planes should contain
at least one nodal loop, which either enclose the �/M or A/L

points. However, in SG No. 190 there exist four-dimensional
irreducible representations at the A point, which makes the
bands fourfold-degenerate. Thus, symmetry-enforced nodal
loops generically occur only within the kx = π plane, but not
within the kx = 0 plane.

C. Compatibility relations between irreps

The symmetry-enforced band crossings discussed in the
previous two sections can also be derived from the compat-
ibility relations between irreducible representations (irreps) at
different high-symmetry points (or lines) of the BZ [52,53].
Here, we give a brief outline of this derivation focusing on SG
171 (P 65); further details can be found in Appendix B.

The symmetries of electronic band structures with spin-
orbit coupling and time-reversal symmetry are described by
double crystallographic SGs and their double-valued irre-
ducible representations [28,53]. If we restrict the total band
structure to a particular high-symmetry point k (or high-
symmetry line) in the BZ, then the symmetries of the band
structure are reduced to a subgroup of the double SG, which
is called the little group at k. Since the Hamiltonian restricted
to k commutes with the corresponding little group, we can
label its Bloch bands by the double-valued irreps of the little
group. Moving in a continuous way from a point with high
symmetry (k1, say) to a point with lower symmetry (k2, say),
we find that the little-group irreps at these two points must be
related to each other, as the little groups at k1 and k2 form
a group-subgroup pair. In fact, a representation of the little
group at k2 can be subduced from the little-group irreps at k1.
By decomposing this subduced representation into irreps, one
obtains the compatibility relations between the irreps at k1 and
k2 [53,54]. These compatibility relations then determine the
connectivity of the Bloch bands in the BZ.

We will now show how this works for the case of SG 171
(P 65). For this SG, the relevant high-symmetry points that we
need to consider are the TRIMs � and A. These two TRIMs
are connected by the high-symmetry line �-�-A, which is
left invariant under the screw rotation C6,2 (cf. Sec. II A 2).
To determine the connectivity of the bands between the �

and A points, we first derive the little-group irreps at �, A,
and �-�-A, and then study the compatibilities between them.
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TABLE III. Double-valued irreps of SG 171 (P 62) without time-
reversal symmetry at the � and A points. Here, we use the same
convention as in Ref. [53] for the labeling of the irreps.

Irrep\Element E C6,2 C2
6,2 C3

6,2 C4
6,2 C5

6,2

�7 1 −i −1 i 1 −i

�8 1 i −1 −i 1 i

�9 1 ei5π/6 e−iπ/3 i e−i2π/3 eiπ/6

�10 1 e−iπ/6 e−iπ/3 −i e−i2π/3 e−i5π/6

�11 1 eiπ/6 eiπ/3 i ei2π/3 ei5π/6

�12 1 e−i5π/6 eiπ/3 −i ei2π/3 e−iπ/6

A7 1 e−iπ/6 e−iπ/3 −i e−i2π/3 e−i5π/6

A8 1 ei5π/6 e−iπ/3 i e−i2π/3 eiπ/6

A9 1 e−i5π/6 eiπ/3 −i ei2π/3 e−iπ/6

A10 1 eiπ/6 eiπ/3 i ei2π/3 ei5π/6

A11 1 i −1 −i 1 i

A12 1 −i −1 i 1 −i

Table III lists the calculated double-valued irreps at � and A

for SG 171 without time-reversal. To construct time-reversal
symmetric irreps, we pair complex conjugated irreps from
Table III and form a direct sum out of them [28,53]. In this
way we obtain at the � point the real irreps �7�8, �9�12, and
�10�11, while at the A point we get A7A10, A8A9, and A11A12.
Note that these real irreps are all two-dimensional, leading to a
twofold degeneracy of the bands at � and A, in agreement with
Kramers theorem. On the �-�-A line, however, the symmetry
is lower, as time-reversal is absent; only the screw rotation C6,2

remains as a valid symmetry. As a consequence, the little-group
irreps at �-�-A are in general complex, as shown in Table IV.

Next, we derive the compatibility relations between the
little-group irreps at �, A, and �-�-A. This can be achieved, in
principle, by studying the subduction of the little-group irreps
at � (or A) onto the little group at �-�-A [54]. Here, however,
we can use a simpler method, which makes use of the following
relation between the characters χ [55] of the little-group irreps

χ [DlDl̄(g)] =
2∑

i=1

χ [�mi
(g)], (2.8)

where χ [DlDl̄(g)] is the character of the symmetry element
g for the real irrep DlDl̄ , and {�m1 ,�m2} is the set of irreps

TABLE IV. Double-valued irreps of SG 171 (P 62) at the �-�-A
line. The irreps have momentum-dependent phases due to the partial
translation of the C6,2 symmetry. Note that the character χ of the
symmetry elements Cn

6,2 can be inferred from the equation χ (Cn
6,2) =

χ (C6,2)n. Here, we use the same convention as in Ref. [53] for the
labeling of the irreps.

Irrep\Element E C6,2

�7 1 −ie−ikz/3

�8 1 ie−ikz/3

�9 1 ei5π/6e−ikz/3

�10 1 e−iπ/6e−ikz/3

�11 1 eiπ/6e−ikz/3

�12 1 e−i5π/6e−ikz/3

FIG. 5. Band connectivity diagram for SG 171 (P 62) along the
�-�-A line, which is left invariant under the screw rotation C6,2.
The bands at the TRIMs are labeled by real pairs of double-valued
irreps of C6,2, using the convention of [53]. The colors indicate the
double-valued irreps at the �-�-A line.

that DlDl̄ decomposes into. Equation (2.8) essentially follows
from the fact that the characters of each valid symmetry must
be preserved, as we continuously move from � (or A) to a point
on the �-�-A line. Using Eq. (2.8) we find that the real irreps
at � must decompose into

�7�8 → �7 + �8,

�9�12 → �9 + �12, (2.9)

�10�11 → �10 + �11,

while for the real irreps at A we have

A7A10 → �8 + �11,

A8A9 → �7 + �12, (2.10)

A11A12 → �9 + �10.

These two sets of equations are the compatibility relations
between the little-group irreps at �, A, and �-�-A.

The Bloch bands along �-�-A must satisfy all of these
compatibility relations. That is, as we move from� to a point on
�-�-A, Kramers pairs must decompose according to Eq. (2.9),
while as we approach A, they must pair up according to
Eq. (2.10). As a consequence, the little-group irreps of �-�-A
switch partners, as shown in Fig. 5. That is, the bands connect
in a nontrivial way, with a minimum number of two crossings.
This is in full agreement with Sec. II A 2; cf. Fig. 3(b).

Using a similar approach as above, we have derived the com-
patibility relations for all SGs of Table I and constructed the
corresponding band connectivity diagrams; see Appendix B.
We find that the band connectivities obtained in this way fully
agree with the derivation of Secs. II A and II B, which is based
on the algebraic relations obeyed by the symmetry operators.

D. Filling constraints

It follows from band theory that, in the presence of
time-reversal symmetry, a noninteracting band insulator can
form only if the electron filling ν is an even integer, i.e.,
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ν ∈ 2N [56]. That is, materials without strong correlations and
ν /∈ 2N must necessarily be (semi)metals. However, in mate-
rials with nonsymmorphic symmetries these filling constraints
for the existence of band insulators are tightened [9,27,57].
That is, nonsymmorphic symmetries forbid the existence of
band insulators even when ν ∈ 2N. This is because nonsym-
morphic symmetries generally enforce extra band crossings,
leading to groups of more than two connected bands, as we
have seen in Secs. II A and II B. Thus, we can use the analysis
of the above two sections to derive tight filling constraints for
the corresponding SGs. For example, for SG 169 we find that
along the M-U -L line four bands form a connected group,
while along the �-�-A line 12 bands form a connected group.
Hence, for a material in SG 169 to be an insulator, these groups
of bands must be fully filled, i.e., the electron filling ν must
be an element of 4N ∩ 12N = 12N. Using similar arguments,
tight filling constraints for all the SGs of Table I can be derived;
see the fifth column.

Recently, the tight filling constraints for all 230 SGs with
time-reversal symmetry and spin-orbit coupling were calcu-
lated by Watanabe et al. [58], using compatibility relations
between irreducible representations. Our analysis is in full
agreement with Ref. [58] and, moreover, explicitly reveals both
the nature and the topological protection of the enforced band
crossings that lead to the tightened filling constraints.

III. BAND CROSSINGS PROTECTED
BY OFF-CENTERED SYMMETRIES

Nonsymmorphic symmetries G = {g|t⊥} with a translation
part t⊥ that is perpendicular to the g invariant space can be
transformed into symmorphic symmetries by a suitable choice
of reference for g. For instance, a glide mirror symmetry
M = {m|t⊥} with a translation part t⊥ that is perpendicular
to the mirror plane can be transformed into a symmorphic
mirror symmetry by shifting the origin by t⊥/2. However,
in the presence of a second symmetry G′ = {g′|t′} with a
reference point different from G, the two translation parts that
are perpendicular to the point-group invariant spaces cannot
be removed both at the same time, since a shift of the origin
affects both G and G′. A pair of two such symmetries are called
“off-centered” symmetries [40,41,43,59].

We are now going to show how these off-centered sym-
metries in hexagonal SGs lead to the protection of fourfold-
degenerate nodal lines (i.e., Dirac lines), which we refer to as
type-(ii) nodal lines [60]. The relevant off-centered symmetries
that we need to consider for this purpose are as follows: the
glide mirror symmetry M̃z = {m̃z| 1

2 ẑ}, which transforms the
spatial coordinates and the spin as

M̃z : (x,y,z) → (x,y, − z + 1/2)iσz, (3.1)

together with the inversion symmetry P , which sends
(x,y,z) → (−x, − y, − z). Since M̃2

z = −1, the eigenvalues
of M̃z are ±i. Within the two m̃z invariant planes, kx =
0 and kx = π , we can label the Bloch states |ψm(k)〉 by
the M̃z eigenvalues, i.e., M̃z|ψ±(k)〉 = ±i|ψ±(k)〉. Applying
the symmetry operators M̃z and P successively, we obtain the
following commutation relation:

M̃zP |ψ±(k)〉 = eikzP M̃z|ψ±(k)〉. (3.2)

FIG. 6. (a) In materials with the off-centered symmetries M̃z and
P [see Eq. (3.1)], two Kramers degenerate bands with opposite M̃z

eigenvalues cross each other within the kz = π plane, forming a
fourfold-degenerate nodal line. The red and blue represent the M̃z

eigenvalues +i and −i, respectively. (b) Fourfold-degenerate Dirac
nodal line protected by the off-centered symmetries, connecting the
A and L points of the hexagonal BZ.

Thus, in the kz = 0 plane the two symmetry operators
commute, while in the kz = π plane they anticommute.
Now, since the time-reversal symmetry operator T = iσyK
commutes with both M̃z and P , M̃z anticommutes with
PT within the kz = π plane. Hence, the Kramers pair
|ψ±(k)〉 and PT |ψ±(k)〉 have the same M̃z eigenvalues
for kz = π , since M̃z[PT |ψ±(k)〉] = −PT [±i|ψ±(k)〉] =
±iPT |ψ±(k)〉. Therefore, if two bands with opposite M̃z

eigenvalues cross within the kz = π plane, they form a pro-
tected line crossing with fourfold degeneracy.

Such a fourfold-degenerate nodal line is in fact required to
exist by symmetry alone, i.e., it occurs in any material with the
off-centered symmetries (M̃z,P ). To see this, let us consider
the degeneracies at the two TRIMs A and L within the kz = π

plane. At these TRIMs the Bloch states form quartets of four
degenerate states with the M̃z eigenvalues

M̃z|ψ±(K)〉 = ±i|ψ±(K)〉,
M̃zP |ψ±(K)〉 = ∓iP |ψ±(K)〉,
M̃zT |ψ±(K)〉 = ∓iT |ψ±(K)〉,

M̃zPT |ψ±(K)〉 = ±iPT |ψ±(K)〉, (3.3)

where K ∈ {A,L}. These four Bloch states are mutually or-
thogonal to each other, since they either have opposite M̃z

eigenvalues or are Kramers partners. As we move away from
the TRIMs, the Bloch bands become twofold-degenerate in
general. We find, however, that the two energetically degener-
ate states |ψ±(K + k)〉 and |ψ±(K − k)〉, which are mapped
onto each other by P (or by T ), have opposite M̃z eigenvalues.
This leads to a band structure, whose M̃z eigenvalues are in-
verted with respect to K, as shown in Fig. 6(a). Since the Bloch
bands are smooth functions of k, each quartet of Bloch states
at K must therefore be part of a fourfold-degenerate nodal
line connecting two TRIMs, as illustrated in Fig. 6(b). Note
that this fourfold-degenerate nodal line must be symmetric
under T and P and all other point-group symmetries of the
SG, but is otherwise free to move within the kz = π plane. For
this reason, the type-(ii) nodal lines in hexagonal systems are
typically shaped like a star [see Fig. 6(b)].
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From the above analysis, we expect that hexagonal materials
in SGs containing both inversion and the glide mirror symmetry
M̃z (3.1) have protected type-(ii) nodal lines. The SGs that
fulfill these criteria are Nos. 176, 193, and 194 (cf. Table I).
However, for SG Nos. 193 and 194, additional symmetries
force the nodal lines to be pinned to the high-symmetry lines
connecting A to L and A to H , respectively. Hence, in these
cases the fourfold degeneracy is simply a consequence of the
four-dimensionality of the corresponding irreducible space-
group representation, and hence the argument based on off-
centered symmetries is not needed.

IV. EXAMPLE MATERIALS

To find example materials, we look for compounds crys-
tallizing in one of the 13 SGs of Table I with heavy elements,
showing large spin-orbit coupling. For that purpose we perform
an extensive search of the Inorganic Crystal Structure Database
(ICSD) from FIZ Karslruhe [48,61], focusing on binary com-
pounds and simple ternary compounds. This search yields two
materials with nodal points and two materials with nodal lines,
which we are now going to discuss in detail.

For the four example materials we perform DFT cal-
culations with the Vienna ab initio simulation package
(VASP) [62,63] using the projector augmented wave (PAW)
method [64,65] and the Perdew-Burke-Ernzerhof (PBE) func-
tional [66] for the exchange-correlation energy. As input for
the DFT calculations, the experimental crystal structure of
Refs. [67–70] was used. In the main text, we present only those
features of the band structures that clearly show the predicted
band crossings, while the full band structures are shown in
Appendix C. For one of the four materials, we also compute
the surface states using a Wannier-based tight-binding model
[71] and an iterative Green’s-function method [72].

A. Materials with nodal points

1. AuF3

Gold trifluoride AuF3 [67] crystallizing in SG P 6122 (No.
178) is an example of a hexagonal material with Weyl point
nodes along the �-�-A and M-U -L lines (cf. Sec. II A).
The first-principles band structure of AuF3 displays a well-
separated group of 12 bands ∼1.5 eV above the Fermi energy
EF. [Figs. 7 and 16(a)]. This group of bands shows the predicted
Weyl points in a very clear way. Along the �-�-A line, which
is symmetric under the screw rotation C6,1, we observe a
group of 12 bands sticking together with an accordion-like
dispersion, forming five crossings. Along the M-U -L line,
which is invariant under the screw rotation C3

6,1, there are
groups of four connected bands, with an hourglass dispersion
and a single crossing point. (Note that the two bands marked by
the red square form an avoided crossing.) This is in complete
agreement with the theoretical band connectivity diagrams of
Figs. 3(a) and 2(a), respectively. The occupied states below the
Fermi level [see Fig. 16(a) in Appendix C] exhibit the same
band connectivity as the unoccupied ones in Fig. 7. That is,
along the �-�-A and M-U -L lines, there are groups of 12n and
4n connected bands, respectively, which form a large number
of Weyl points (and possibly also Weyl lines) protected by the
screw rotation symmetries.

FIG. 7. Electronic band structure of AuF3 in SG P 6122 (No.
178). The band crossings along the �-�-A and M-U -L lines are
symmetry-enforced by the screw rotations C6,1 and C3

6,1, respectively
(see Sec. II A). The red square in the middle panel indicates an avoided
crossing. The black open symbols represent the Weyl points formed
by the second and third lowest bands. The green open symbols label
the crossings of the sixth and seventh lowest bands, which are part of
Weyl nodal lines.

The topological stability of all these Weyl points is ensured
by quantized Chern numbers, which endow the Weyl points
with definite chiralities ν. Interestingly, the chiralities of the
Weyl points of AuF3 can be inferred from symmetry alone,
at least up to some overall signs. This can be achieved using
the following three observations. First, the chiralities ν must
be either +1 or −1, since all the bands cross linearly and not
quadratically [73]. Second, the chiralities of all the Weyl points
formed by one pair of bands must add up to zero, due to the
fermion doubling theorem [74]. Third, Weyl points that are
mapped onto each other under space-group symmetries must
have the same chiralities. Using these three observations, let
us, as an example, analyze the chiralities of the Weyl points
formed by the second and third lowest bands in Fig. 7 (black
open symbols). How the bands connect across the entire BZ
can be deduced from Fig. 16 shown in Appendix C. Looking
at the hexagonal BZ in Fig. 1, we see that there are three
Weyl points at the M-U -L lines with chirality νMUL, two
Weyl points at the K-P -H lines with chirality νKPH , and one
Weyl point at the �-�-A line with chirality ν��A. Hence, the
chiralities of these six Weyl points must obey the equation
3νMUL + 2νKPH + ν��A = 0, which, up to an overall sign,
fully determines the chiralities, i.e., (νMUL,νKPH ,ν��A) =
(+1, − 1, − 1) [75]. Similar arguments can be made for all
the other Weyl points of AuF3 and in fact for any material
with these type-(i) Weyl points (cf. Table I). A peculiar case
are the crossings formed by the sixth and seventh lowest
bands in Fig. 7 (green open symbols). We find that these
bands cross only on the �-�-A and M-U -L lines, but not
along the K-P -H path. Therefore, the chiralities must satisfy
3νMUL + ν��A = 0, which paradoxically has no solution. The
resolution to this conundrum is that the band crossings marked
by the green symbols are not actually Weyl points, but rather
Weyl nodal lines, whose chirality is ill-defined. These Weyl
nodal lines connect the M-U -L path to the �-�-A path in a
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FIG. 8. (a) Momentum-resolved surface density of states for the
(010) face of AuF3 with bottom termination at the energy E − EF =
1.14 eV. Yellow and blue correspond to high and low density,
respectively. The black square and triangle indicate the location of
the Weyl points along the M-U -L and K-P -H lines, respectively
(cf. Fig. 7). There are two arc states connecting the two Weyl points.
Panels (b) and (c) show the Au and F atoms in the two outermost
layers of the top and bottom (010) terminations, respectively. The Au
(F) atoms in the first and second layers are color by light and dark
yellow (gray), respectively.

sixfold star-shaped pattern, which is confirmed by our ab initio
DFT calculations (not shown).

The nontrivial topology exhibited by the Weyl points of
AuF3 manifests itself at the surface through arc states, which
connect Weyl points with opposite chiralities. This is shown
in Fig. 8, which displays the surface density of states of
a semi-infinite AuF3 slab with a (010) face at the energy
E − EF = 1.14 eV. The corresponding surface BZ is shown
on the right side of Fig. 1. The crystal structure of AuF3 allows
for two different (010) terminations, which are displayed in
Figs. 8(b) and 8(c). In Fig. 8(a) we show the surface density of
states for the bottom termination; the corresponding plot for
the top termination is presented in Fig. 17 of Appendix C. We
observe that there are two arc states connecting the projected
Weyl points of theM-U -L andK-P -H lines, which are marked
by the black square and triangle, respectively. Similar arc
states occur for all the other Weyl points along the �-�-A
and M-U -L lines, also in the occupied bands.

While the band connectivity and the associated Weyl points
of AuF3 are very interesting from a theoretical point of view,

FIG. 9. First-principles band structure of γ -In2Se3 in SG P 61

(No. 169). Weyl nodal points protected by the screw rotations C6,1

and C3
6,1 occur along the �-�-A and M-U -L lines, respectively

(see Sec. II A).

this material is rather difficult to handle experimentally, as it
is highly reactive. Moreover, AuF3 is insulating with a large
band gap of ∼2 eV, which makes it nearly impossible to probe
the bulk Weyl points and arc surface states using tunneling
spectroscopy, photoemission, or transport experiments. There-
fore, in order to experimentally confirm the predicted band
crossings, it is more feasible instead to consider the γ phase
of In2Se3.

2. In2 Se3

In2Se3 exists in several polymorphic forms [76]. In one
of them, the so called γ phase, In2Se3 crystallizes in the
space group P 61 (No. 169) [68]. Hence, according to our
classification Table I, the band structure of γ -In2Se3 exhibits
Weyl points along the �-�-A and M-U -L lines, which are
protected by the screw rotations C6,1 and C3

6,1, respectively.
Figure 9 displays the ab initio band structure of γ -In2Se3,
which clearly shows these Weyl points. We observe groups of
four connected bands along the M-U -L direction, which cross
at least once, similar to the band connectivity diagram 2(a).
Along the �-�-A line there are groups of 12n connected bands,
which form at least 6n − 1 Weyl points [Figs. 9 and 16(b)].
Similar to AuF3, these Weyl points lead to arc surface states,
due to the bulk boundary correspondence. Here, however,
the arc states are much closer to the Fermi energy, which
makes it possible to observe them using, e.g., angle-resolved
photoemission or scanning tunneling spectroscopy. Moreover,
γ -In2Se3 can have p-type defects that would move the Fermi
level closer to the Weyl points. This would allow us to measure
the topological transport signatures of the Weyl points, e.g.,
anomalous (magneto)transport properties due to the chiral
anomaly [3,4]. In addition, γ -In2Se3 is expected to exhibit
large anomalous Hall effects, since all the bands carry a
nonzero Berry curvature, which is especially large close to
the Weyl points.

B. Materials with nodal lines

Here, we present two materials with symmetry-enforced
nodal lines: ZrIrSn, which has twofold-degenerate Weyl nodal
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FIG. 10. Electronic band structure of ZrIrSn in SG P 6̄2c (No.
190). The band crossings along the M-U -L path are part of Weyl
nodal lines within the kx = π plane, which are protected by the glide
mirror symmetry Mx . These Weyl nodal lines enclose one of the two
time-reversal invariant momenta M or L, as shown in the inset for the
crossing near E � −0.64 eV.

lines [type-(i)], and LaBr3, which exhibits fourfold-degenerate
Dirac nodal lines [type-(ii)].

1. ZrIrSn

ZrIrSn crystallizing in SG P 6̄2c (No. 190) [69] is an exam-
ple of a hexagonal material with Weyl nodal lines protected by a
mirror glide symmetry. In Fig. 10 we present the first-principles
band structure of ZrIrSn. Along the M-U -L line, which is
invariant under the mirror glide symmetry Mx , we observe
groups of four connected bands, which cross each other at least
once. Since these crossings must occur for any path within the
kx = π plane connecting M to L (cf. Sec. II B), they form
Weyl nodal lines. The shape of the Weyl nodal line for the
crossing near E � −0.64 eV is shown in the inset of Fig. 10.
All the other Weyl nodal lines have similar shapes and enclose
one of the TRIMs M or L in the kx = π plane. We emphasize
that all the bands within the kx = π plane form such Weyl
nodal lines, since their existence is enforced by the mirror glide
symmetry. The topological properties of these Weyl nodal lines
are characterized by a nonzero Berry phase [13], which, by the
bulk-boundary correspondence, leads to drumhead states at the
surface of ZrIrSn. Moreover, due to the absence of inversion,
the bands in ZrIrSn carry a nonzero Berry curvature, which
is particularly large close to the Weyl nodal lines. In slightly
doped samples of ZrIrSn this should give rise to anomalous
transport properties, such as, e.g., large anomalous Hall effects
or anomalous magnetoelectric responses [37].

2. LaBr3

An example of a hexagonal material with Dirac nodal lines
is LaBr3 in SG P 63/m (No. 176) [70]. As indicated in Table I,
materials in this SG exhibit fourfold-degenerate nodal lines
within the kz = π plane protected by the off-centered symme-
tries M̃z and P . To verify this, we perform first-principles band-
structure calculations of LaBr3 to obtain the band structure
shown in Figs. 11 and 18(c). All the bands of LaBr3 are
Kramers degenerate, since SG P 63/m (No. 176) contains a PT

FIG. 11. First-principles band structure of LaBr3 in SG P 63/m

(No. 176). The band crossings along the A-L-H -A path are part of
Dirac nodal lines, which are symmetry enforced by the off-centered
symmetries M̃z and P (cf. Sec. III). The inset shows the Dirac nodal
lines within the kz = π plane formed by the two topmost valence
bands. All the other bands form similar nodal lines; cf. Fig. 18(b).

symmetry that squares to −1. Along the A-L-H -A path, within
the kz = π plane, there are groups of two Kramers degenerate
bands that cross each other several times. These band crossings
are part of a fourfold-degenerate Dirac nodal line, whose shape
resembles a star (inset of Fig. 11), in complete agreement with
the theoretical analysis of Sec. III. These Dirac nodal lines are
protected from hybridizing, since the bands that cross have
opposite M̃z eigenvalues. Note that such star-shaped Dirac
nodal lines are formed by all the bands at all energies, since
their existence follows from symmetry alone, independent
of the energetics of the bands. Thus, probing this insulating
material below the Fermi energy (which might be possible if
flakes of this layered compound are deposited on a metallic
substrate) with angle-resolved photoemission spectroscopy
would reveal the star-shaped band crossings.

In closing, we note that LiScI3 [77] crystallizing in SG P 6̄c2
(No. 188) is an example of a material with Weyl nodal lines
within the kxkz plane. Unfortunately, the spin-orbit coupling in
this material is rather weak, leading to a band splitting of only
about ∼10 meV. We therefore do not discuss this material in
any further detail here.

V. CONCLUSIONS

In this work, we have classified all possible nonsymmorphic
band degeneracies in hexagonal materials with time-reversal
symmetry and strong spin-orbit coupling. Our classification
approach is based on representation theory of space groups
and the algebraic relations between symmetry operators. We
find that 13 out of the 27 hexagonal space groups (SGs) support
topological band crossings protected by nonsymmorphic sym-
metries (Table I). Among them there are ten SGs with Weyl
nodal points (Nos. 169-173 and 178-182), two SGs with Weyl
nodal lines (Nos. 188 and 190), and one SG with Dirac nodal
lines (No. 176). The stability of these band crossings is ensured
by quantized topological numbers, i.e., by a Chern number or
a π -Berry phase. We emphasize that the appearance of these
band crossings is enforced by symmetry alone, i.e., they occur
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in any (weakly correlated) material crystallizing in these SGs,
regardless of the chemical composition.

The results of our classification are helpful for searching
and designing materials with Weyl and Dirac nodal points or
nodal lines. Using the ICSD [48], we have identified a number
of hexagonal materials that exhibit topological band crossings
(last column of Table I). Particularly interesting are γ -In2Se3

and ZrIrSn, as their band crossings are sufficiently close to the
Fermi energy to be measurable. The nontrivial topology of the
band crossings in these two materials has various experimental
consequences: arc and drumhead surface states, which can
be observed by angle-resolved photoemission, and various
anomalous responses to external probes, such as anomalous
magnetotransport properties, and anomalous Hall effects [4].
These anomalous properties may open up the possibilities for
new device applications, such as spin-filter transistors [78], or
valleytronics applications, which utilize the valley degree of
freedom to process information [47,79]. We hope that this will
stimulate experimentalists to synthesize the reported materials
and study their topological properties and responses.

In closing, we mention several interesting directions for
future studies. First, our approach can be generalized to other
magnetic and nonmagnetic SGs containing screw rotations or
glide mirror symmetries. In particular, materials in SGs con-
taining threefold or fourfold screw rotations (e.g., in trigonal
systems [80]) can have multiple Weyl band crossings with
accordion-like dispersions, similar to Fig. 3. Second, it would
be of interest to derive a detailed theory of the topological
responses, in particular for the Dirac nodal line materials
in SG No. 176, which remain poorly understood. Third, we
expect that our analysis can be adapted to bosonic systems, for
example phononic or photonic band structures, or the bands
formed by elementary excitations of quantum magnets.
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APPENDIX A: MINIMUM NUMBER OF CROSSINGS

In this Appendix, we prove that 2k bands forming a con-
nected group along a line in between two TRIMs must cross at
least k − 1 times (cf. Sec. II A). This problem is closely related
to finding the minimum number of crossings for a bipartite
graph, which in general is not a solved problem [81]. However,
in the case of connected groups of bands with time-reversal
symmetry and spin-orbit coupling, the corresponding bipartite
graphs exhibit additional constraints, such that a proof can be
constructed using mathematical induction.

We start by relating connected groups of 2k bands to
connected bipartite graphs of order 2k. For that purpose, we
identify the energy values of the Kramer’s pairs at the two

FIG. 12. Procedure to connect one more node on each side of a
bipartite graph. The added crossings are minimized by connecting the
closest nodes.

TRIMs with the vertices (i.e., nodes) of the graph. The edges
(i.e., lines) of the graph are identified with the bands along the
path that connects the two TRIMs. Because this identification
is one-to-one, the lines cannot curve outside the nodes to avoid
crossings. Each node of the graph has degree 2, because in the
absence of inversion symmetry the Kramer’s pairs split into
two nondegenerate bands as we move away from the TRIMs.
Moreover, the graph is bipartite, since every line connects two
nodes of two distinct TRIMs. The order of the graph is 2k,
because 2k bands form 2k Kramer’s pairs at the two TRIMs.
Using mathematical induction, we will now show that the
minimum number of crossings in this bipartite graph with 2k

nodes is k − 1.
First we need to prove this statement for k = 1: The

minimum number of crossings in a bipartite graph with two
nodes is trivially zero, since a double connection between
two nodes never has to cross itself. For the induction step,
we need to show that if the statement holds for a graph with
2k nodes, it must also hold for a graph with 2k + 2 nodes. So
let us assume that there is a graph with 2k nodes with crossing
number k − 1. We now wish to connect two more nodes of
degree 2 to the bipartite graph, (i.e., one node at each TRIM),
such that the total number of crossings is increased by as little
as possible (see Fig. 12). This is achieved by (i) connecting
the (k + 1)th node at the left TRIM to the (k + 1)th node at
the right TRIM and (ii) connecting the kth node at the left
TRIM to the (k + 1)th node at the right TRIM, and vice versa.
This creates one additional crossing. Thus, the total number of
crossings is now k = (k + 1) − 1, which completes the proof.

APPENDIX B: COMPATIBILITY RELATIONS
BETWEEN IRREPS

In this Appendix, we detail the derivation of the band
connectivity diagrams using compatibility relations between
irreps. In Sec. II C we have explained how this is done for
SG 171. The derivation for SGs 169, 170, 172, and 173
proceeds in a very similar way. That is, for these SGs the
double valued little-group irreps at the relevant TRIMs (�,
A, M , and L) are all complex and one-dimensional [28,54].
Time-reversal symmetric irreps are constructed by pairing
complex conjugated irreps and forming a direct sum out of
them. The decomposition of these irreps, as we move from
� to a point on �-�-A, say, can be inferred from Eq. (2.8).
Alternatively, these compatibility relations can be obtained
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FIG. 13. Band connectivity diagrams for SG 178 (P 6122) for (a)
the �-�-A line and (b) the M-U -L line, which are left invariant
under the screw rotations C6,1 and C3

6,1, respectively. The bands at the
TRIMs are labeled by (real pairs of) double-valued irreps of the screw
rotations. The colors in (a) represent the double-valued irreps at the
�-�-A line.

from the programs DCOMPREL and BANDREP on the Bilbao
Crystallographic Server (BCS) [26,29,53]. The final step is
to connect the irreps at the two TRIMs � and A (or M

and L) through the irreps at �-�-A (or M-U -L), such that
the compatibility relations are satisfied. This yields band
connectivity diagrams that are identical to the ones derived
in Sec. II A.

Next, we consider SGs 178–182, for which the double-
valued little-group irreps at the TRIMs are either complex
and one-dimensional or pseudoreal and two-dimensional. For
example, for SG 178 (P 6122), in which AuF3 crystalizes,
we find that all little-group irreps at the � and M points
are pseudoreal, while at the A and L points there exist
both complex and pseudoreal irreps. Pseudoreal irreps are
time-reversal invariant by themselves, whereas complex irreps
need to be paired up into complex-conjugate pairs to form
time-reversal invariant irreps [28,54]; cf. Fig. 13. As before,
the decomposition of these irreps, as we move from a TRIM to
a point on the �-�-A (or M-U -L) line, can be deduced from
Eq. (2.8) or the BANDREP program on the BCS. We find that
the little-group irreps of �-�-A (M-U -L) switch partners as
we move from � to A (M to L), leading to a nontrivial band
connectivity diagram with a minimum number of five (one)
crossings; see Fig. 13. A similar analysis can be applied to the
SGs 179-182, which yields identical results as in Sec. II A.

Finally, we examine the compatibility relations for the two
SGs 188 (P 6̄c2) and 190 (P 6̄2c), which exhibit protected Weyl
nodal lines. Here, we need to study how the time-reversal
invariant irreps at the TRIMs decompose as we move from
a TRIM to a nearby point in a mirror invariant plane. We find
that the little-group irreps at � and M are pseudoreal, while at
A and L they are complex. Hence, the time-reversal invariant
irreps at A and L are formed by the direct sum of complex-
conjugate pairs, cf. Figs. 14 and 15. Interestingly, at the A point
there are both two-dimensional and four-dimensional time-
reversal invariant irreps. The compatibility relations for SG
188 between the little-group irreps at �/A (M/L) and the kxkz

plane are shown Fig. 14(a) [Fig. 14(b)]. The corresponding
plots for SG 190 are presented in Figs. 15(a) and 15(b).
Using these compatibility relations, we now construct band
connectivity diagrams for a path within a mirror invariant plane

FIG. 14. (a), (b) Compatibility relations for SG 188 (P 6̄c2)
between the little-group irreps at �, A, and D; and M , L, and D,
respectively. Here, D denotes the kxkz plane. Note that the little-group
irreps at � and M decompose in the same way as we move from �/M

to the kxkz plane. (c), (d) Band connectivity diagrams for SG 188 for
(c) a path within the kxkz plane connecting �/M to A and (d) a path
within the kxkz plane connecting �/M to L.

FIG. 15. (a), (b) Compatibility relations for SG 190 (P 6̄2c)
between the little-group irreps at �, A, and C; and M , L and C ′,
respectively. Here, C and C ′ denote the kx = 0 and kx = π planes,
respectively. (c), (d) Band connectivity diagrams for SG 190 for (c) a
path within the kx = 0 plane connecting � to A, and (d) a path within
the kx = π plane connecting M to L.
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FIG. 16. DFT band structures of (a) AuF3 and (b) γ -In2Se3, which
exhibit Weyl points along the �-�-A and M-U -L lines. Energies are
measured with respect to the Fermi energy EF = 0.

that connects two TRIMs, see Figs. 14(c), 14(d), 15(c), and
15(d). For SG 188 we observe that for any mirror-invariant
path within the kxkz-plane, connecting � or M to L, there
must be at least one band crossing. Hence, the kxkz plane must
contain at least one Weyl nodal line. Similarly, for SG 190
we find that for any path within the kx = π plane, connecting
M to L, there must be at least one band crossing. Within the
kx = 0 plane, however, a band crossing is not guaranteed by
symmetry, since the bands can be fourfold-degenerate at the
A point. Thus, in SG 190 there are symmetry-enforced nodal
lines within the kx = π plane, but in general not within the
kx = 0 plane. These findings are in complete agreement with
the analysis of Sec. II B.

APPENDIX C: ADDITIONAL BAND-STRUCTURE
AND SURFACE-STATE CALCULATIONS

In this Appendix, we present additional band-structure and
surface-state calculations for the example materials discussed
in the main text. Figure 16 displays the full band structures
of the two materials AuF3 and γ -In2Se3, which exhibit Weyl
points. AuF3 is insulating with a large gap of ∼2 eV. We
observe that Weyl points with accordion dispersions occur
along �-�-A both in the conduction and valence bands. While
the accordion dispersion is clearly visible above EF, it is less
clear below EF, where the bands are not well separated in
energy [Fig. 16(a)]. Nevertheless, all valence bands form Weyl

M

A

ΓK

L H

FIG. 17. Momentum-resolved surface density of states for the
(010) top surface of AuF3 at the energy E − EF = 1.14 eV. The cor-
responding plot for the bottom surface is shown in Fig. 8(a). The
arrangement of the Au and F atoms on the top and bottom terminations
is presented in Figs. 8(b) and 8(c).

points along the �-�-A and M-U -L lines, as required by
symmetry. By the bulk-boundary correspondence these Weyl
points give rise to arc surface states. Figure 17 shows the arc
states at the (010) surface of AuF3 with top termination, which
connect the Weyl points formed by the lowest two conduction

FIG. 18. DFT band structures of (a) ZrIrSn and (b) LaBr3, which
exhibit Weyl lines and Dirac lines, respectively. Energies are measured
with respect to the Fermi energy EF = 0.
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bands. Since AuF3 is insulating with a gap of ∼2 eV, it is very
difficult to experimentally probe the Weyl points. In principle,
one could try to dope AuF3 with F defects to bring the Fermi
level into the valence band. But this is likely challenging.

The γ phase of In2Se3 is also insulating, but with a
smaller gap of ∼0.9 eV; see Fig. 16(b). Here, it might be
possible to measure the Weyl points along the �-�-A line
using photoemission, as they are only about 300–400 meV
below the Fermi energy. It might also be possible to observe
signatures of the Fermi arc states using Fourier-transform
scanning tunneling spectroscopy.

In Fig. 18 we present the full band structures of the nodal
line materials ZrIrSn and LaBr3, which exhibit Weyl and Dirac
nodal lines, respectively. ZrIrSn contains two Weyl nodal lines
within the kx = π plane that are only about 100 meV away
from the Fermi energy [Figs. 18(a) and 10]. These Weyl
nodal lines give rise to drumhead states on the (100) and
(010) surfaces. Because of spin-orbit coupling, these drumhead

surface states possess an intricate helical spin texture, with
the spin and momentum directions locked to each other.
It should be possible to measure this spin texture using,
e.g., spin-resolved photoemission or spin-resolved scanning
tunneling spectroscopy. Furthermore, in slightly doped ZrIrSn
samples, the Weyl nodal lines could be accessed in transport
experiments. We expect that this material will show anomalous
magnetoelectric responses and anomalous Hall effects, since
the bands carry a nonzero Berry curvature.

The Dirac nodal lines of LaBr3, which are located within
the kz = π plane, are difficult to observe, as this material is
insulating with a gap of about ∼2.5 eV [Fig. 18(b)]. It might
be possible to probe the Dirac nodal lines below the Fermi
energy in exfoliated flakes of LaBr3 deposited on a metallic
substrate. However, this is likely challenging as the material is
air-sensitive. Therefore, the search for suitable Dirac nodal-line
materials in SG 176 with band crossing at the Fermi energy
remains a goal for future work.
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